Back to Search Start Over

Asymptotic profile of positive solutions of Lane-Emden problems in dimension two

Authors :
Francesca De Marchis
Isabella Ianni
Filomena Pacella
De Marchis, Francesca
Ianni, Isabella
Pacella, Filomena
Publication Year :
2016
Publisher :
arXiv, 2016.

Abstract

We consider families $u_p$ of solutions to the problem \begin{equation}\label{problemAbstract} \left\{\begin{array}{lr}-\Delta u= u^p & \mbox{ in }\Omega\\ u>0 & \mbox{ in }\Omega\\ u=0 & \mbox{ on }\partial \Omega \end{array}\right.\tag{$\mathcal E_p$} \end{equation} where $p>1$ and $\Omega$ is a smooth bounded domain of $\mathbb R^2$. We give a complete description of the asymptotic behavior of $u_p$ as $p\rightarrow +\infty$, under the condition \[p\int_{\Omega} |\nabla u_p|^2\,dx\rightarrow \beta\in\mathbb R\qquad\mbox{ as $p\rightarrow +\infty$}.\]

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ce748bf6d8c0decbe20a39ce51c448e2
Full Text :
https://doi.org/10.48550/arxiv.1607.05659