Back to Search
Start Over
Asymptotic profile of positive solutions of Lane-Emden problems in dimension two
- Publication Year :
- 2016
- Publisher :
- arXiv, 2016.
-
Abstract
- We consider families $u_p$ of solutions to the problem \begin{equation}\label{problemAbstract} \left\{\begin{array}{lr}-\Delta u= u^p & \mbox{ in }\Omega\\ u>0 & \mbox{ in }\Omega\\ u=0 & \mbox{ on }\partial \Omega \end{array}\right.\tag{$\mathcal E_p$} \end{equation} where $p>1$ and $\Omega$ is a smooth bounded domain of $\mathbb R^2$. We give a complete description of the asymptotic behavior of $u_p$ as $p\rightarrow +\infty$, under the condition \[p\int_{\Omega} |\nabla u_p|^2\,dx\rightarrow \beta\in\mathbb R\qquad\mbox{ as $p\rightarrow +\infty$}.\]
- Subjects :
- Asymptotic analysis
positive solutions
Mathematics::General Mathematics
Mathematics::Number Theory
Dimension (graph theory)
superlinear elliptic boundary value problems
01 natural sciences
Omega
Domain (mathematical analysis)
Combinatorics
Mathematics - Analysis of PDEs
concentration of solutions
modeling and simulation
FOS: Mathematics
applied mathematics
0101 mathematics
Mathematics
Image (category theory)
010102 general mathematics
semilinear elliptic equations
High Energy Physics::Phenomenology
010101 applied mathematics
asymptotic analysis
Bounded function
geometry and topology
Analysis of PDEs (math.AP)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....ce748bf6d8c0decbe20a39ce51c448e2
- Full Text :
- https://doi.org/10.48550/arxiv.1607.05659