Back to Search Start Over

Hints on the evolutionary design of a dimeric RNase withspecialbioactions

Authors :
Giuseppe D'Alessio
Alberto Di Donato
Ivana Romeo
Valeria Cafaro
DI DONATO, Alberto
Cafaro, Valeria
Romeo, I.
D'Alessio, Giuseppe
Romeo, I
AND DALESSIO, G.
Source :
Scopus-Elsevier
Publication Year :
1995
Publisher :
Wiley, 1995.

Abstract

Residues P19, L28, C31, and C32 have been implicated (Di Donato A, Cafaro V, D'Alessio G, 1994, J Biol Chem 269:17394-17396; Mazzarella L, Vitagliano L, Zagari A, 1995, Proc Natl Acad Sci USA: forthcoming) with key roles in determining the dimeric structure and the N-terminal domain swapping of seminal RNase. In an attempt to have a clearer understanding of the structural and functional significance of these residues in seminal RNase, a series of mutants of pancreatic RNase A was constructed in which one or more of the four residues were introduced into RNase A. The RNase mutants were examined for: (1) the ability to form dimers; (2) the capacity to exchange their N-terminal domains; (3) resistance to selective cleavage by subtilisin; and (4) antitumor activity. The experiments demonstrated that: (1) the presence of intersubunit disulfides is both necessary and sufficient for engendering a stably dimeric RNase; (2) all four residues play a role in determining the exchange of N-terminal domains; (3) the exchange is the molecular basis for the RNase antitumor action; and (4) this exchange is not a prerequisite in an evolutionary mechanism for the generation of dimeric RNases.

Details

ISSN :
1469896X and 09618368
Volume :
4
Database :
OpenAIRE
Journal :
Protein Science
Accession number :
edsair.doi.dedup.....ce6e80cae69fb32d05989a2908c59635