Back to Search
Start Over
Existence of competitive equilibrium in an optimal growth model with heterogeneous agents and endogenous leisure
- Source :
- Macroeconomic Dynamics, Macroeconomic Dynamics, Cambridge University Press (CUP), 2011, pp.1-19, Macroeconomic Dynamics, Cambridge University Press (CUP), 2012, pp.1-19. ⟨10.1017/S1365100511000587⟩, Macroeconomic Dynamics, 2011, 16 (supl1), pp.33-51. ⟨10.1017/S1365100511000587⟩
- Publication Year :
- 2011
- Publisher :
- HAL CCSD, 2011.
-
Abstract
- This paper proves the existence of competitive equilibrium in a single-sector dynamic economy with heterogeneous agents, elastic labor supply and complete assets markets. The method of proof relies on some recent results concerning the existence of Lagrande multipliers in infinite dimensional spaces and their representation as a summable sequence and a direct application of the inward boundary fixed point theorem.<br />Dans ce papier, nous démontrons l'existence d'un équilibre compétitif dans un modèle dynamique à un secteur avec des agents hétérogènes, offre de travail endogène et marchés financiers complets. La méthode de la preuve s'appuie, d'une part, sur des résultats récents d'existence des multiplicateurs de Lagrange dans des espaces de dimension infinie et de leur représentation comme des séquences sommables et d'autre part sur l'application d'un théorème de point fixe généralisé (inward boundary fixed point theorem).
- Subjects :
- Economics and Econometrics
Lagrange multipliers
JEL: E - Macroeconomics and Monetary Economics/E.E1 - General Aggregative Models/E.E1.E13 - Neoclassical
jel:C61
Optimal growth model, Lagrange multipliers, Competitive equilibrium, Elastic labor supply
Fixed-point theorem
Boundary (topology)
Individually Rational Pareto Optimum
JEL: D - Microeconomics/D.D5 - General Equilibrium and Disequilibrium/D.D5.D51 - Exchange and Production Economies
Competitive equilibrium
[SHS]Humanities and Social Sciences
jel:O41
JEL: C - Mathematical and Quantitative Methods/C.C6 - Mathematical Methods • Programming Models • Mathematical and Simulation Modeling/C.C6.C61 - Optimization Techniques • Programming Models • Dynamic Analysis
équilibre compétitive
0502 economics and business
Economics
C61, D51, E13, O41
050207 economics
Optimal growth model,Lagrange multipliers,competitive equilibrium,individually rational Pareto Optimum,elastic labor supply.,Modèle de croissance optimale,multiplicateurs de Lagrange,équilibre compétitive,offre de travail endogène
[SHS.ECO] Humanities and Social Sciences/Economics and Finance
Representation (mathematics)
B- ECONOMIE ET FINANCE
050205 econometrics
Sequence
Elastic labor supply.,Individually Rational Pareto Optimum,Elastic labor supply,Optimal growth model,Lagrange multipliers,Competitive equilib- rium
jel:D51
05 social sciences
[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]
[SHS.ECO]Humanities and Social Sciences/Economics and Finance
[MATH.MATH-CA] Mathematics [math]/Classical Analysis and ODEs [math.CA]
jel:E13
multiplicateurs de Lagrange
Optimal growth model
Elastic labor supply
offre de travail endogène
Modèle de croissance optimale
8. Economic growth
JEL: O - Economic Development, Innovation, Technological Change, and Growth/O.O4 - Economic Growth and Aggregate Productivity/O.O4.O41 - One, Two, and Multisector Growth Models
Optimal growth
Mathematical economics
Competitive equilib- rium
competitive equilibrium
Subjects
Details
- Language :
- English
- ISSN :
- 13651005 and 14698056
- Database :
- OpenAIRE
- Journal :
- Macroeconomic Dynamics, Macroeconomic Dynamics, Cambridge University Press (CUP), 2011, pp.1-19, Macroeconomic Dynamics, Cambridge University Press (CUP), 2012, pp.1-19. ⟨10.1017/S1365100511000587⟩, Macroeconomic Dynamics, 2011, 16 (supl1), pp.33-51. ⟨10.1017/S1365100511000587⟩
- Accession number :
- edsair.doi.dedup.....ce4d42886831e6edcc92e3d7c3721dcb