Back to Search Start Over

Water vapor in Titan’s stratosphere from Cassini CIRS far-infrared spectra

Authors :
Nicholas A Teanby
Carrie M. Anderson
G. Bampasidis
Emmanuel Lellouch
F. M. Flasar
Valeria Cottini
Gordon L. Bjoraker
Richard Achterberg
N. Gorius
Patrick G. J. Irwin
R. de Kok
Bruno Bézard
Athena Coustenis
Donald E. Jennings
Conor A. Nixon
NASA Goddard Space Flight Center (GSFC)
Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
School of Earth Sciences [Bristol]
University of Bristol [Bristol]
Science Systems and Applications, Inc. [Lanham] (SSAI)
SRON Netherlands Institute for Space Research (SRON)
Clarendon Laboratory [Oxford]
University of Oxford [Oxford]
University of Oxford
Source :
Icarus, Icarus, Elsevier, 2012, 220 (2), pp.855-862. ⟨10.1016/j.icarus.2012.06.014⟩, Icarus, 2012, 220 (2), pp.855-862. ⟨10.1016/j.icarus.2012.06.014⟩, Icarus 220 (2012) 2, Icarus, 220(2), 855-862
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

Here we report the measurement of water vapor in Titan's stratosphere using the Cassini Composite Infrared Spectrometer (CIRS, Flasar, F.M. et al. [2004]. Space Sci. Rev. 115, 169-297). CIRS senses water emissions in the far infrared spectral region near 50μm, which we have modeled using two independent radiative transfer codes (NEMESIS (Irwin, P.G.J. et al. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150) and ART (Coustenis, A. et al. [2007]. Icarus 189, 35-62; Coustenis, A. et al. [2010]. Icarus 207, 461-476). From the analysis of nadir spectra we have derived a mixing ratio of 0.14±0.05ppb at an altitude of 97km, which corresponds to an integrated (from 0 to 600km) surface normalized column abundance of 3.7±1.3×10 14molecules/cm 2. In the latitude range 80°S to 30°N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13±0.04ppb at an altitude of 115km and 0.45±0.15ppb at an altitude of 230km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models (e.g. Lara, L.M., Lellouch, F., Lopez-Moreno, J.J., Rodrigo, R. [1996]. J. Geophys. Res. 101(23), 261; Wilson, E.H., Atreya, S.K. [2004]. J. Geophys. Res. 109, E6; Hörst, S.M., Vuitton, V., Yelle, R.V. [2008]. J. Geophys. Res., 113, E10). We have also fitted our data using scaling factors of ~0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan's lower stratosphere. © 2012 Elsevier Inc..

Details

Language :
English
ISSN :
00191035 and 10902643
Database :
OpenAIRE
Journal :
Icarus, Icarus, Elsevier, 2012, 220 (2), pp.855-862. ⟨10.1016/j.icarus.2012.06.014⟩, Icarus, 2012, 220 (2), pp.855-862. ⟨10.1016/j.icarus.2012.06.014⟩, Icarus 220 (2012) 2, Icarus, 220(2), 855-862
Accession number :
edsair.doi.dedup.....ce3c91aefa0cb566e4ad0b794c9b5a73