Back to Search
Start Over
Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice
- Source :
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 22(2)
- Publication Year :
- 2007
-
Abstract
- Myostatin is a potent negative regulator of skeletal muscle growth. Therefore, myostatin inhibition offers a novel therapeutic strategy for muscular dystrophy by restoring skeletal muscle mass and suppressing the progression of muscle degeneration. The known myostatin inhibitors include myostatin propeptide, follistatin, follistatin-related proteins, and myostatin antibodies. Although follistatin shows potent myostatin-inhibiting activities, it also acts as an efficient inhibitor of activins. Because activins are involved in multiple functions in various organs, their blockade by follistatin would affect multiple tissues other than skeletal muscles. In the present study, we report the characterization of a myostatin inhibitor derived from follistatin, which does not affect activin signaling. The dissociation constants (K(d)) of follistatin to activin and myostatin are 1.72 nM and 12.3 nM, respectively. By contrast, the dissociation constants (K(d)) of a follistatin-derived myostatin inhibitor, designated FS I-I, to activin and myostatin are 64.3 microM and 46.8 nM, respectively. Transgenic mice expressing FS I-I, under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. Hyperplasia and hypertrophy were both observed. We crossed FS I-I transgenic mice with mdx mice, a model for Duchenne muscular dystrophy. Notably, the skeletal muscles in the mdx/FS I-I mice showed enlargement and reduced cell infiltration. Muscle strength is also recovered in the mdx/FS I-I mice. These results indicate that myostatin blockade by FS I-I has a therapeutic potential for muscular dystrophy.
- Subjects :
- Genetically modified mouse
endocrine system
medicine.medical_specialty
Follistatin
Duchenne muscular dystrophy
Mice, Transgenic
Myostatin
Biochemistry
Muscular Dystrophies
Muscle hypertrophy
Cell Line
Mice
Transforming Growth Factor beta
Internal medicine
Genetics
medicine
Animals
Humans
Muscular dystrophy
Muscle, Skeletal
Molecular Biology
biology
Chemistry
Skeletal muscle
musculoskeletal system
medicine.disease
Kinetics
medicine.anatomical_structure
Endocrinology
Gene Expression Regulation
embryonic structures
Mutation
biology.protein
Mice, Inbred mdx
ITGA7
hormones, hormone substitutes, and hormone antagonists
Biotechnology
Protein Binding
Subjects
Details
- ISSN :
- 15306860
- Volume :
- 22
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
- Accession number :
- edsair.doi.dedup.....cdf0a4a77acb04e3cdb113b945407ba4