Back to Search Start Over

Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice

Authors :
Yoshihide Sunada
Mitsuru Matsumoto
Hiromu Sugino
Yuka Takehara
Tatsuya Murakami
Sumihare Noji
Kunihiro Tsuchida
Akiyoshi Uezumi
Masashi Nakatani
Yoshihisa Hasegawa
Osamu Hashimoto
Shin'ichi Takeda
Source :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 22(2)
Publication Year :
2007

Abstract

Myostatin is a potent negative regulator of skeletal muscle growth. Therefore, myostatin inhibition offers a novel therapeutic strategy for muscular dystrophy by restoring skeletal muscle mass and suppressing the progression of muscle degeneration. The known myostatin inhibitors include myostatin propeptide, follistatin, follistatin-related proteins, and myostatin antibodies. Although follistatin shows potent myostatin-inhibiting activities, it also acts as an efficient inhibitor of activins. Because activins are involved in multiple functions in various organs, their blockade by follistatin would affect multiple tissues other than skeletal muscles. In the present study, we report the characterization of a myostatin inhibitor derived from follistatin, which does not affect activin signaling. The dissociation constants (K(d)) of follistatin to activin and myostatin are 1.72 nM and 12.3 nM, respectively. By contrast, the dissociation constants (K(d)) of a follistatin-derived myostatin inhibitor, designated FS I-I, to activin and myostatin are 64.3 microM and 46.8 nM, respectively. Transgenic mice expressing FS I-I, under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. Hyperplasia and hypertrophy were both observed. We crossed FS I-I transgenic mice with mdx mice, a model for Duchenne muscular dystrophy. Notably, the skeletal muscles in the mdx/FS I-I mice showed enlargement and reduced cell infiltration. Muscle strength is also recovered in the mdx/FS I-I mice. These results indicate that myostatin blockade by FS I-I has a therapeutic potential for muscular dystrophy.

Details

ISSN :
15306860
Volume :
22
Issue :
2
Database :
OpenAIRE
Journal :
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Accession number :
edsair.doi.dedup.....cdf0a4a77acb04e3cdb113b945407ba4