Back to Search Start Over

Two-Step Recognition of DNA Damage for Mammalian Nucleotide Excision Repair: Directional Binding of the XPC Complex and DNA Strand Scanning

Authors :
Fumio Hanaoka
Shigenori Iwai
Kaoru Sugasawa
Jun-ichi Akagi
Ryotaro Nishi
Source :
Molecular Cell. 36:642-653
Publication Year :
2009
Publisher :
Elsevier BV, 2009.

Abstract

For mammalian nucleotide excision repair (NER), DNA lesions are recognized in at least two steps involving detection of unpaired bases by the XPC protein complex and the subsequent verification of injured bases. Although lesion verification is important to ensure high damage discrimination and the accuracy of the repair system, it has been unclear how this is accomplished. Here, we show that damage verification involves scanning of a DNA strand from the site where XPC is initially bound. Translocation by the NER machinery exhibits a 5'-to-3' directionality, strongly suggesting involvement of the XPD helicase, a component of TFIIH. Furthermore, the initial orientation of XPC binding is crucial in that only one DNA strand is selected to search for the presence of lesions. Our results dissect the intricate molecular mechanism of NER and provide insights into a strategy for mammalian cells to survey large genomes to detect DNA damage.

Details

ISSN :
10972765
Volume :
36
Database :
OpenAIRE
Journal :
Molecular Cell
Accession number :
edsair.doi.dedup.....cdcab24873b5cfae149222aa0a132411