Back to Search Start Over

The implication of input data aggregation on up-scaling soil organic carbon changes

Authors :
Gang Zhao
Elisabet Lewan
Sren Gebbert
Claas Nendel
Zhigan Zhao
Thomas Gaiser
Edmar Teixeira
Edwin Haas
Elsa Coucheney
Kurt Christian Kersebaum
Reimund Rtter
Giacomo Trombi
Frank Ewert
Enli Wang
Jagadeesh Yeluripati
Davide Cammarano
Marco Moriondo
Stefan Siebert
Matthias Kuhnert
Julie Constantin
Luca Doro
Daniel Wallach
Xenia Specka
Marco Bindi
Belay T. Kassie
Holger Hoffmann
Fulu Tao
Helene Raynal
Henrik Eckersten
Balzs Grosz
Rene Dechow
Senthold Asseng
Pier Paolo Roggero
Lutz Weihermller
Thünen Institute of Climate Smart Agriculture
Crop Science Group
Rheinische Friedrich-Wilhelms-Universität Bonn
UMR : AGroécologie, Innovations, TeRritoires
Ecole Nationale Supérieure Agronomique de Toulouse
Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA)
Institut National de la Recherche Agronomique (INRA)
Department of Soil and Environment
Swedish University of Agricultural Sciences (SLU)
Department of Crop Production Ecology
Institute of Landscape Systems Analysis
Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF)
Biological and Environmental Sciences, School of Biological Sciences
University of Aberdeen
The James Hutton Institute
Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU)
Karlsruher Institut für Technologie (KIT)
Systems Modeling Team (Sustainable Production Group)
New Zealand Institute for Plant and Food Research Limited
Department of Agri-food Production and Environmental Sciences
University of Florence (UNIFI)
Istituto di Biometeorologia [Firenze] (IBIMET)
Consiglio Nazionale delle Ricerche (CNR)
Desertification Research Centre
University of Sassari
Desertification Research Centre - Department of Agricultural Sciences
CSIRO
Climate Impacts Group
Department of Crop Sciences
Georg-August-Universität Göttingen
Agricultural & Biological Engineering Department
University of Florida [Gainesville]
Institute of Bio- and Geosciences Agrosphere (IBG-3)
AGroécologie, Innovations, teRritoires (AGIR)
Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
Departement of Soil and Environment
Plant & Food Research
Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
Georg-August-University [Göttingen]
Department of Agricultural and Biological Engineering [Gainesville] (UF|ABE)
Institute of Food and Agricultural Sciences [Gainesville] (UF|IFAS)
University of Florida [Gainesville] (UF)-University of Florida [Gainesville] (UF)
Source :
Environmental Modelling and Software, Environmental Modelling and Software, Elsevier, 2017, 96, pp.361-377. ⟨10.1016/j.envsoft.2017.06.046⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1km and 100km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low. Analysis of soil data aggregation on model errors of up-scaled SOC trends.Determination of factors controlling aggregation effects (AE) on modeled SOC trends.Comparison of variability between 7 biogeochemical models and AE.Development of ex ante methods to approximate AE for SOC simulation studies.

Details

Language :
English
ISSN :
13648152
Database :
OpenAIRE
Journal :
Environmental Modelling and Software, Environmental Modelling and Software, Elsevier, 2017, 96, pp.361-377. ⟨10.1016/j.envsoft.2017.06.046⟩
Accession number :
edsair.doi.dedup.....cdc4be704430e69b6a6746c660a61bf1
Full Text :
https://doi.org/10.1016/j.envsoft.2017.06.046⟩