Back to Search
Start Over
Improved identifiability of myocardial material parameters by an energy-based cost function
- Source :
- Nasopoulou, A, Shetty, A, Lee, J, Nordsletten, D, Rinaldi, C A, Lamata de la Orden, P & Niederer, S 2017, ' Improved identifiability of myocardial material parameters by an energy-based cost function ', Biomechanics and Modeling in Mechanobiology, pp. 1-18 . https://doi.org/10.1007/s10237-016-0865-3, Biomechanics and Modeling in Mechanobiology
- Publisher :
- Springer Nature
-
Abstract
- Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1=3000\pm 1700\,\hbox {Pa}$$\end{document}C1=3000±1700Pa and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =45\pm 25$$\end{document}α=45±25 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_f=25\pm 14$$\end{document}bf=25±14, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{ft}=11\pm 6$$\end{document}bft=11±6, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{t}=9\pm 5$$\end{document}bt=9±5) for the HF cases and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1=1700\,\hbox {Pa}$$\end{document}C1=1700Pa and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =15$$\end{document}α=15 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_f=8$$\end{document}bf=8, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{ft}=4$$\end{document}bft=4, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{t}=3$$\end{document}bt=3) for the healthy case.
- Subjects :
- Patient-specific modelling
Heart Ventricles
Quantitative Biology::Tissues and Organs
0206 medical engineering
Constitutive equation
Finite Element Analysis
Physics::Medical Physics
02 engineering and technology
030204 cardiovascular system & hematology
Parameter space
Models, Biological
03 medical and health sciences
0302 clinical medicine
Transverse isotropy
Modelling and Simulation
Statistics
medicine
Parameter estimation
Applied mathematics
Humans
Computer Simulation
Mathematics
Heart Failure
Original Paper
Estimation theory
Myocardium
Mechanical Engineering
Stiffness
Reproducibility of Results
020601 biomedical engineering
Finite element method
Biomechanical Phenomena
Modeling and Simulation
Energy based
Identifiability
medicine.symptom
Passive constitutive equations
Algorithms
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 16177959
- Volume :
- 16
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Biomechanics and Modeling in Mechanobiology
- Accession number :
- edsair.doi.dedup.....cdb6ddc51a4900770f80d5f8c3aaf360
- Full Text :
- https://doi.org/10.1007/s10237-016-0865-3