Back to Search
Start Over
Macrocyclic Chromium(III) Catecholate Complexes
- Source :
- Inorganic Chemistry. 60:4447-4455
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- The synthesis and structural, electrochemical, spectroscopic, and magnetic characterizations of CrIII(HMC) catecholate and semiquinonate complexes are reported herein, where HMC is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. cis-[Cr(HMC)(Cat)]+ complexes (Cat = catecholate, [1]+; tetrachlorocatecholate, [2]+; and 3,5-di-tert-butylcatecholate, [3]+) were prepared from the reaction between appropriate catechol and [CrIII(HMC)Cl2]Cl reduced in situ by zinc. Chemical oxidation of [3]+ by FcPF6 resulted in cis-[Cr(HMC)(SQ)]2+ ([3]2+, SQ = 3,5-di-tert-butylsemiquinonate). Single crystal X-ray diffraction studies revealed the cis-chelation of the Cat/SQ ligand around the Cr metal center and confirmed the Cat/SQ nature of the ligands. Reversible oxidations of Cat to SQ were observed in the cyclic voltammograms of [1]+-[3]+, while the CrIII center remains redox inactive. The absorption spectrum of the SQ complex [3]2+ exhibits an intense spin-forbidden transition in solution. Time-delayed phosphorescence spectra recorded at 77 K revealed that all catecholate complexes emit from the 2E state, while [2]+ also emits from the 2T1 state. Temperature-dependent magnetic susceptibility measurements indicate the Cat complexes exist as S = 3/2 systems, while the SQ complex behaves as an S = 1 system, resulting from strong antiferromagnetic coupling of the S = 3/2 Cr center with the S = 1/2 SQ radical. Density functional theory (DFT) shows the similarities between the SOMOs of [1]+ and [2]+ and differences in their LUMOs in the ground state.
- Subjects :
- Catechol
Absorption spectroscopy
010405 organic chemistry
Ligand
Chemistry
010402 general chemistry
Electrochemistry
01 natural sciences
Magnetic susceptibility
Redox
0104 chemical sciences
Inorganic Chemistry
Metal
chemistry.chemical_compound
Crystallography
visual_art
visual_art.visual_art_medium
Density functional theory
Physical and Theoretical Chemistry
Subjects
Details
- ISSN :
- 1520510X and 00201669
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Inorganic Chemistry
- Accession number :
- edsair.doi.dedup.....cdb050db18b61a1150e37a5cf0db3a50
- Full Text :
- https://doi.org/10.1021/acs.inorgchem.0c03224