Back to Search Start Over

Alteration of cartilage mechanical properties in absence of β1 integrins revealed by rheometry and FRAP analyses

Authors :
Livia Cueru
Frédéric Mallein-Gerin
Anne Paumier
Ana-Maria Trunfio-Sfarghiu
Attila Aszodi
Jonathan Bariller
Yves Berthier
Carole Bougault
Marilyne Malbouyres
Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²)
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS)
Centre National de la Recherche Scientifique (CNRS)-École Supérieure Chimie Physique Électronique de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École Supérieure Chimie Physique Électronique de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Institut de biologie et chimie des protéines [Lyon] (IBCP)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Department of molecular medicine
Max-Planck-Institut
Tribologie et Mécanique des Interfaces (TMI)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Experimental Surgery and Regenerative Medicine (LMU)
Ludwig-Maximilians-Universität München (LMU)
Source :
Journal of Biomechanics, Journal of Biomechanics, Elsevier, 2013, 46 (10), pp.1633-1640. ⟨10.1016/j.jbiomech.2013.04.013⟩, Journal of Biomechanics, Elsevier, 2013, 46 (10), pp.1633-40. ⟨10.1016/j.jbiomech.2013.04.013⟩
Publication Year :
2012

Abstract

Context Mechanical properties are essential for biological functions of the hyaline cartilage such as energy dissipation and diffusion of solutes. Mechanical properties are primarily dependent on the hierarchical organization of the two major extracellular matrix (ECM) macromolecular components of the cartilage: the fibrillar collagen network and the glycosaminoglycan (GAG)-substituted proteoglycan, mainly aggrecan, aggregates. Interaction of chondrocytes, the only cell type in the tissue, with the ECM through adhesion receptors is involved in establishing mechanical stability via bidirectional transduction of both mechanical forces and chemical signals. In this study, we aimed to determine the role of the transmembrane β1 integrin adhesion receptors in cartilage biomechanical properties by the use of genetic modification in mice. Methods Costal cartilages of wild type and mutant mice lacking β1 integrins in chondrocytes were investigated. Cartilage compressive properties and solute diffusion were characterized by rheometric analysis and Fluorescence Recovery After Photobleaching (FRAP), respectively. Cartilage tissue sections were analyzed by histology, immunohistochemistry and transmission electron microscopy (TEM). Results At the histological level, the mutant costal cartilage was characterized by chondrocyte rounding and loss of tissue polarity. Immunohistochemistry and safranin orange staining demonstrated apparently normal aggrecan and GAG levels, respectively. Antibody staining for collagen II and TEM showed comparable expression and organization of the collagen fibrils between mutant and control cartilages. Despite the lack of gross histological and ultrastructural abnormalities, rheological measurements revealed that the peak elastic modulus in compression of mutant cartilage was 1.6-fold higher than the peak elastic modulus of wild-type sample. Interestingly, the diffusion coefficient within the mutant cartilage tissue was found to be 1.2-fold lower in the extracellular space and 14-fold lower in the pericellular (PCM) space compared to control. Conclusion The results demonstrate that the absence of β1 integrins on the surface of chondrocytes increases the stiffness and modifies the diffusion properties of costal cartilage. Our data imply that β1 integrins-mediated chondrocyte–matrix interactions directly affect cartilage biomechanics probably by modifying physical properties of individual cells. This study thus highlights the crucial role of β1 integrins in the cartilage function.

Details

ISSN :
18732380 and 00219290
Volume :
46
Issue :
10
Database :
OpenAIRE
Journal :
Journal of biomechanics
Accession number :
edsair.doi.dedup.....cd7cb1ac59765383b209f196fbcfd438
Full Text :
https://doi.org/10.1016/j.jbiomech.2013.04.013⟩