Back to Search Start Over

Some new Stein operators for product distributions

Authors :
Yvik Swan
Guillaume Mijoule
Robert E. Gaunt
University of Manchester [Manchester]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Liège
Robert E. Gaunt acknowledges support from EPSRC grant EP/K032402/1 and is currently supported by a Dame Kathleen Ollerenshaw Research Fellowship. Robert E. Gaunt is grateful to Université de Liège, FNRS and EPSRC for funding a visit to University de Liège, where some of thedetails of this project were worked out. Yvik Swan gratefully acknowledges support by the Fonds de la Recherch e Scientifique - FNRS under Grant MIS F.4539.16. Part of GM’s research was supported by a WG (Welcome Grant) from Université de Liège
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria de Paris
Source :
Brazilian Journal of Probability and Statistics, Brazilian Journal of Probability and Statistics, 2020, 34 (4), pp.795-808. ⟨10.1214/19-BJPS460⟩, Braz. J. Probab. Stat. 34, no. 4 (2020), 795-808, Brazilian Journal of Probability and Statistics, São Paulo, SP : Associação Brasileira de Estatística, 2020, 34 (4), pp.795-808. ⟨10.1214/19-BJPS460⟩, Brazilian Journal of Probability and Statistics, 34 (4
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

We provide a general result for finding Stein operators for the product of two independent random variables whose Stein operators satisfy a certain assumption, extending a recent result of Gaunt, Mijoule and Swan \cite{gms18}. This framework applies to non-centered normal and non-centered gamma random variables, as well as a general sub-family of the variance-gamma distributions. Curiously, there is an increase in complexity in the Stein operators for products of independent normals as one moves, for example, from centered to non-centered normals. As applications, we give a simple derivation of the characteristic function of the product of independent normals, and provide insight into why the probability density function of this distribution is much more complicated in the non-centered case than the centered case.<br />Comment: 18 pages. To appear in Brazilian Journal of Probability and Statistics, 2019+

Details

Language :
English
ISSN :
01030752 and 23176199
Database :
OpenAIRE
Journal :
Brazilian Journal of Probability and Statistics, Brazilian Journal of Probability and Statistics, 2020, 34 (4), pp.795-808. ⟨10.1214/19-BJPS460⟩, Braz. J. Probab. Stat. 34, no. 4 (2020), 795-808, Brazilian Journal of Probability and Statistics, São Paulo, SP : Associação Brasileira de Estatística, 2020, 34 (4), pp.795-808. ⟨10.1214/19-BJPS460⟩, Brazilian Journal of Probability and Statistics, 34 (4
Accession number :
edsair.doi.dedup.....cd7be5bb02e832f64b53229624e637cc
Full Text :
https://doi.org/10.1214/19-BJPS460⟩