Back to Search Start Over

Effect of Light Activation of Pulp-Capping Materials and Resin Composite on Dentin Deformation and the Pulp Temperature Change

Authors :
de Paula Rodrigues M
Carlos José Soares
A.A. Bicalho
M.S. Ferreira
Antheunis Versluis
Stella Sueli Lourenço Braga
Source :
Operative dentistry. 43(1)
Publication Year :
2017

Abstract

SUMMARY Objectives: To analyze the effect of pulp-capping materials and resin composite light activation on strain and temperature development in the pulp and on the interfacial integrity at the pulpal floor/pulp-capping materials in large molar class II cavities. Methods: Forty extracted molars received large mesio-occlusal-distal (MOD) cavity bur preparation with 1.0 mm of dentin remaining at the pulp floor. Four pulp-capping materials (self-etching adhesive system, Clearfil SE Bond [CLE], Kuraray), two light-curing calcium hydroxide cements (BioCal [BIO], Biodinâmica, and Ultra-Blend Plus [ULT], Ultradent), and a resin-modified glass ionomer cement– (Vitrebond [VIT], 3M ESPE) were applied on the pulpal floor. The cavities were incrementally restored with resin composite (Filtek Z350 XT, 3M ESPE). Thermocouple (n=10) and strain gauge (n=10) were placed inside the pulp chamber in contact with the top of the pulpal floor to detect temperature changes and dentin strain during light curing of the pulp-capping materials and during resin composite restoration. Exotherm was calculated by subtracting postcure from polymerization temperature (n=10). Interface integrity at the pulpal floor was investigated using micro-CT (SkyScan 1272, Bruker). The degree of cure of capping materials was calculated using the Fourier transform infrared and attenuated total reflectance cell. Data were analyzed using one-way analysis of variance followed by the Tukey test (α=0.05). Results: Pulpal dentin strains (μs) during light curing of CLE were higher than for other pulp-capping materials (p Conclusions: Light curing of pulp-capping materials caused deformation of pulpal dentin and increased pulpal temperature in large MOD cavities. Shrinkage of the resin composite restoration caused debonding of BIO from the pulpal floor.

Details

ISSN :
15592863
Volume :
43
Issue :
1
Database :
OpenAIRE
Journal :
Operative dentistry
Accession number :
edsair.doi.dedup.....cd5effd8a3a7019d1d3f2e09e2d13eef