Back to Search Start Over

A Combination Strategy Targeting Enhancer Plasticity Exerts Synergistic Lethality Against Beti-Resistant Leukemia Cells

Authors :
Margaret A. Goodell
Yun Huang
Mark A. Dawson
Jia Li
Clifford Stephan
Anna Guzman
Lei Guo
Deqiang Sun
Peter J.A. Davies
Yubin Zhou
Tingting Li
Minjung Lee
Hongxiang Zeng
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-16 (2020), Nature Communications
Publication Year :
2019
Publisher :
American Society of Hematology, 2019.

Abstract

Primary and acquired drug resistance imposes a major threat to achieving optimized clinical outcomes during cancer treatment. Aberrant changes in epigenetic modifications are closely involved in drug resistance of tumor cells. Using BET inhibitor (BETi) resistant leukemia cells as a model system, we demonstrated herein that genome-wide enhancer remodeling played a pivotal role in driving therapeutic resistance via compensational re-expression of pro-survival genes. Capitalizing on the CRISPR interference technology, we identified the second intron of IncRNA, PVT1, as a unique bona fide gained enhancer that restored MYC transcription independent of BRD4 recruitment in leukemia. A combined BETi and CDK7 inhibitor treatment abolished MYC transcription by impeding RNAPII loading without affecting PVT1-mediated chromatin looping at the MYC locus in BETi-resistant leukemia cells. Together, our findings have established the feasibility of targeting enhancer plasticity to overcome drug resistance associated with epigenetic therapies.<br />Epigenetic changes can drive drug resistance in cancer. Here, the authors show that in BET inhibitor resistant leukaemia cells, genome-wide enhancer remodelling drives therapeutic resistance and targeting enhancer plasticity may overcome this resistance.

Details

ISSN :
15280020 and 00064971
Volume :
134
Database :
OpenAIRE
Journal :
Blood
Accession number :
edsair.doi.dedup.....cd5724787f8db8ee264521450f0925ec