Back to Search Start Over

GALACTIC-SCALE ABSORPTION OUTFLOW IN THE LOW-LUMINOSITY QUASAR IRAS F04250–5718:HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS

Authors :
Gerard A. Kriss
Jay P. Dunn
Maxwell Moe
Jelle Kaastra
Doug Edmonds
John E. Everett
Chris Benn
D. Micheal Crenshaw
Elisa Costantini
Jennifer E. Scott
B. Borguet
Kentaro Aoki
Jack R. Gabel
Steve Penton
Ehud Behar
Kirk T. Korista
Manuel A. Bautista
J. Ignacio González-Serrano
Katrien C. Steenbrugge
Nahum Arav
Universidad de Cantabria
Source :
Astrophysical Journal 2011, 739(1), 7, Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2011
Publisher :
American Astronomical Society, 2011.

Abstract

El Pdf del artículo es la versión pre-print: arXiv:1106.2084v1.-- et al.<br />We present absorption line analysis of the outflow in the quasar IRAS F04250–5718. Far-ultraviolet data from the Cosmic Origins Spectrograph on board the Hubble Space Telescope reveal intrinsic narrow absorption lines from high ionization ions (e.g., C IV, N V, and O VI) as well as low ionization ions (e.g., C II and Si III). We identify three kinematic components with central velocities ranging from ~–50 to ~–230 km s–1. Velocity-dependent, non-black saturation is evident from the line profiles of the high ionization ions. From the non-detection of absorption from a metastable level of C II, we are able to determine that the electron number density in the main component of the outflow is 30 cm–3. Photoionization analysis yields an ionization parameter log U H ~ –1.6 ± 0.2, which accounts for changes in the metallicity of the outflow and the shape of the incident spectrum. We also consider solutions with two ionization parameters. If the ionization structure of the outflow is due to photoionization by the active galactic nucleus, we determine that the distance to this component from the central source is 3 kpc. Due to the large distance determined for the main kinematic component, we discuss the possibility that this outflow is part of a galactic wind.<br />We acknowledge support from NASA STScI grants GO 11686 and GO 12022 as well as NSF grant AST 0837880. JIGS and CB acknowledge financial support from the Spanish Ministerio de Ciencia e Innovacion under project AYA2008-06311-C02-02.

Details

ISSN :
15384357 and 0004637X
Volume :
739
Database :
OpenAIRE
Journal :
The Astrophysical Journal
Accession number :
edsair.doi.dedup.....cd424630e2394ff469adbde702a140e4
Full Text :
https://doi.org/10.1088/0004-637x/739/1/7