Back to Search
Start Over
In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis
- Source :
- mBio, mBio, Vol 7, Iss 4 (2016), mBio, vol 7, iss 4, mBio, Vol 7, Iss 4, p e00808-16 (2016)
- Publication Year :
- 2016
- Publisher :
- American Society for Microbiology, 2016.
-
Abstract
- Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo. Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis.<br />IMPORTANCE Most intracellular pathogens reside inside a membrane-bound vacuole within their host cell that is extensively modified by the pathogen to optimize intracellular growth and avoid host defenses. In Toxoplasma, this vacuole is modified by a host of secretory GRA proteins, many of which remain unidentified. Here we demonstrate that in vivo biotinylation of proximal and interacting proteins using the promiscuous biotin ligase BirA* is a powerful approach to rapidly identify vacuolar GRA proteins. We further demonstrate that one factor identified by this approach, GRA39, plays an important role in the ability of the parasite to replicate within its host cell and cause disease.
- Subjects :
- 0301 basic medicine
Virulence Factors
Cells
030106 microbiology
Protozoan Proteins
Vacuole
Microbiology
Chromatography, Affinity
Mass Spectrometry
Vaccine Related
03 medical and health sciences
Virology
Biodefense
parasitic diseases
2.2 Factors relating to the physical environment
2.1 Biological and endogenous factors
Humans
Biotinylation
Aetiology
Cells, Cultured
Chromatography
Cultured
biology
Staining and Labeling
Intracellular parasite
Prevention
Toxoplasma gondii
Fibroblasts
biology.organism_classification
Foodborne Illness
Fusion protein
QR1-502
3. Good health
Cell biology
030104 developmental biology
Infectious Diseases
Emerging Infectious Diseases
Biochemistry
Affinity
Proteome
Vacuoles
Dense granule
Infection
Toxoplasma
Intracellular
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 21507511
- Volume :
- 7
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- mBio
- Accession number :
- edsair.doi.dedup.....cd1d2f45ede803d209395aa0365d6e3a