Back to Search Start Over

Band structures of delafossite transparent conductive oxides from a self-consistent GW approach

Authors :
Julien Vidal
Silvana Botti
F. Trani
Miguel A. L. Marques
Laboratoire de Physique de la Matière Condensée et Nanostructures (LPMCN)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Laboratoire des Solides Irradiés (LSI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP)
Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D)
EDF (EDF)-EDF (EDF)
Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
EDF R&D (EDF R&D)
EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)
Source :
Physical Review B: Condensed Matter and Materials Physics (1998-2015), Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2010, 82, pp.085115. ⟨10.1103/PhysRevB.82.085115⟩, Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2010, 82, pp.085115. ⟨10.1103/PhysRevB.82.085115⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

We present a comparative study of the electronic band structures of the compounds CuMO2 M=B,Al,In,Ga which belong to the family of delafossite transparent conductive oxides. The theoretical approaches we use are the standard local-density approximation LDA to density-functional theory, LDA + U, hybrid functionals, and perturbative GW on top of LDA or self-consistent Coulomb hole plus screened exchange calculations. The latter approach, state-of-the-art theoretical approach for quasiparticle band structures, predicts direct band gaps that are compatible with experimental optical gaps only after including the strong polaronic and excitonic effects present in these materials. For what concerns the so-called band-gap anomaly of delafossite compounds, we find that GW approaches yield the same qualitative trends with increasing anion atomic number as the LDA: accounting for the oscillator strength at the absorption edge is the key to explain the experimental trend. None of the methods that we applied beyond the simple LDA is in agreement with the small indirect gaps found by many early experiments. This supports the recent view that the absorption bands identified as a sign of the indirect experimental gaps are likely due to defect states in the gap and are not a property of the pristine material.

Details

Language :
English
ISSN :
10980121 and 1550235X
Database :
OpenAIRE
Journal :
Physical Review B: Condensed Matter and Materials Physics (1998-2015), Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2010, 82, pp.085115. ⟨10.1103/PhysRevB.82.085115⟩, Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2010, 82, pp.085115. ⟨10.1103/PhysRevB.82.085115⟩
Accession number :
edsair.doi.dedup.....ccdedace95e7d23d570fd2d981a5f957
Full Text :
https://doi.org/10.1103/PhysRevB.82.085115⟩