Back to Search
Start Over
The Limit Point of the Pentagram Map
- Source :
- International Mathematics Research Notices. 2020:2818-2831
- Publication Year :
- 2018
- Publisher :
- Oxford University Press (OUP), 2018.
-
Abstract
- The pentagram map is a discrete dynamical system defined on the space of polygons in the plane. In the first paper on the subject, R. Schwartz proved that the pentagram map produces from each convex polygon a sequence of successively smaller polygons that converges exponentially to a point. We investigate the limit point itself, giving an explicit description of its Cartesian coordinates as roots of certain degree three polynomials.<br />Comment: 11 pages, 2 figures
- Subjects :
- Sequence
Plane (geometry)
General Mathematics
010102 general mathematics
Metric Geometry (math.MG)
Dynamical Systems (math.DS)
Computer Science::Computational Geometry
Convex polygon
01 natural sciences
law.invention
Combinatorics
Mathematics - Metric Geometry
law
Limit point
Pentagram map
FOS: Mathematics
Mathematics - Combinatorics
Point (geometry)
Degree (angle)
Cartesian coordinate system
Combinatorics (math.CO)
Mathematics - Dynamical Systems
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 16870247 and 10737928
- Volume :
- 2020
- Database :
- OpenAIRE
- Journal :
- International Mathematics Research Notices
- Accession number :
- edsair.doi.dedup.....cca3a87eb6a333a4acbdc4f81aae3405