Back to Search Start Over

Light-Controlled in Vitro Gene Delivery Using Polymer-Tethered Spiropyran as a Photoswitchable Photosensitizer

Authors :
Tiantian Wu
Fude Feng
Jinkai Ji
Yajie Zhang
Source :
ACS Applied Materials & Interfaces. 11:15222-15232
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

A gene delivery system using spiropyran as a photoswitchable photosensitizer for the controlled photochemical internalization effect was developed by engineering the outer coating of a polyethylenimine/DNA complex with a small amount of spiropyran-containing cationic copolymers. The successful binding of cationic polymers by the polyethylenimine coating was detected by the distance-sensitive fluorescence resonance energy-transfer technique that evidenced the occurrence of energy transfer between fluorescein-labeled cationic copolymers and polyethylenimine-condensed rhodamine-labeled DNA. The ternary polyplexes feature reversible controllability of singlet oxygen generation based on the dual effect of spiropyrans in photochromism and aggregation-induced enhanced photosensitization, allowing significant light-induced amplification of bPEI-mediated in vitro transgene efficiency (from original 15% to final 91%) at a low DNA dose, with the integrity of supercoiled DNA structure unaffected. The use of spiropyran without the need of other photosensitizers circumvents the issue of uncontrolled long-lasting photocytotoxicity in gene delivery.

Details

ISSN :
19448252 and 19448244
Volume :
11
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....cc691698e2755b6b9f759e2adb7ffa7f