Back to Search Start Over

Modeling mechanisms of in vivo variability in methotrexate accumulation and folate pathway inhibition in acute lymphoblastic leukemia cells

Authors :
Ching-Hon Pui
Alex Sparreboom
William E. Evans
John C. Panetta
Mary V. Relling
Source :
PLoS Computational Biology, Vol 6, Iss 12, p e1001019 (2010), PLoS Computational Biology
Publication Year :
2010
Publisher :
Public Library of Science (PLoS), 2010.

Abstract

Methotrexate (MTX) is widely used for the treatment of childhood acute lymphoblastic leukemia (ALL). The accumulation of MTX and its active metabolites, methotrexate polyglutamates (MTXPG), in ALL cells is an important determinant of its antileukemic effects. We studied 194 of 356 patients enrolled on St. Jude Total XV protocol for newly diagnosed ALL with the goal of characterizing the intracellular pharmacokinetics of MTXPG in leukemia cells; relating these pharmacokinetics to ALL lineage, ploidy and molecular subtype; and using a folate pathway model to simulate optimal treatment strategies. Serial MTX concentrations were measured in plasma and intracellular MTXPG concentrations were measured in circulating leukemia cells. A pharmacokinetic model was developed which accounted for the plasma disposition of MTX along with the transport and metabolism of MTXPG. In addition, a folate pathway model was adapted to simulate the effects of treatment strategies on the inhibition of de novo purine synthesis (DNPS). The intracellular MTXPG pharmacokinetic model parameters differed significantly by lineage, ploidy, and molecular subtypes of ALL. Folylpolyglutamate synthetase (FPGS) activity was higher in B vs T lineage ALL (p<br />Author Summary One of the primary agents used in the treatment of childhood acute lymphoblastic leukemia (ALL) is methotrexate (MTX). By better understanding its intracellular disposition, we are able to better design treatments that circumvent drug resistance and thus help improve ALL cure rates. In this study, we develop a system of mathematical models that describe the intracellular disposition of MTX along with its inhibition of important biosynthetic pathways necessary for cell division. First, we used the models to describe the disposition of intracellular MTX in a cohort of 194 patients enrolled on St. Jude Total XV protocol for newly diagnosed ALL. The results of this modeling allowed us to determine mechanisms of in vivo variability in MTX accumulation. These mechanisms related to both the influx and efflux of the drug along with the enzymes related to its metabolism. Next, we used model simulations to show the effects of changes in MTX dose and schedule on its efficacy. The results of these simulations show that longer infusions yield better efficacy and that higher MTX doses can circumvent resistance observed in ALL subtypes with lower intracellular MTX accumulate. The results from this study provide new insights into the design of more effective therapy for pediatric ALL.

Details

Language :
English
ISSN :
15537358
Volume :
6
Issue :
12
Database :
OpenAIRE
Journal :
PLoS Computational Biology
Accession number :
edsair.doi.dedup.....cc61f3a0598d023e6f797008cd24e0db