Back to Search Start Over

Involvement of Populus CLEL peptides in root development

Authors :
Dongdong Tian
Xueping Shi
Bo Zheng
Lidan Tian
Yueyuan Liu
Mengjie Wan
Source :
Tree Physiology. 39:1907-1921
Publication Year :
2019
Publisher :
Oxford University Press (OUP), 2019.

Abstract

As one of the major groups of small post-translationally modified peptides, the CLV3/EMBRYO SURROUNDING REGION-RELATED (CLE)-like (CLEL) peptide family has been reported to regulate root growth, lateral root development and plant gravitropic responses in Arabidopsis thaliana. In this study, we identified 12 CLEL genes in Populus trichocarpa and performed a comprehensive bioinformatics analysis on these genes. Among them, five P. trichocarpa CLELs (PtrCLELs) were revised with new gene models. All of these PtrCLEL proteins were structurally similar to the A. thaliana CLELs (AtCLELs), including an N-terminal signal peptide, a conserved C-terminal 13-amino-acid CLEL motif and a variable intermediate region. In silico and quantitative real-time PCR analyses showed that PtrCLELs were widely expressed in various tissues, including roots, leaves, buds and stems. Exogenous application of chemically synthesized PtrCLEL peptides resulted in wavy or curly roots and reduced lateral root formation in A. thaliana. Moreover, germinating Populus deltoides seedlings on a growth medium containing these peptides caused the roots to thicken and to form abnormal lateral roots, in many cases in clusters. Anatomical and histological changes in thickened roots were further investigated by treating Populus 717 cuttings with the PtrCLEL10 peptide. We observed that root thickening was mainly due to an increased number of cells in the epidermis, hypodermis and cortex. The results of our study suggested that PtrCLEL and AtCLEL genes encode proteins with similar protein structures, sequences of peptide motif and peptide activities on developing roots. The activities of PtrCLEL peptides in root development were species-dependent.

Details

ISSN :
17584469
Volume :
39
Database :
OpenAIRE
Journal :
Tree Physiology
Accession number :
edsair.doi.dedup.....cc2e0ae65030a8295d74647fb36ca4d1