Back to Search Start Over

Prediction of all-cause mortality in haemodialysis patients using a Bayesian network

Authors :
Hubert Roth
Denis Fouque
Nans Florens
Marleine Mefeugue Siga
Nadir Mahloul
Michel Ducher
Jean-Pierre Fauvel
Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Centre Hospitalier Lyon Sud [CHU - HCL] (CHLS)
Hospices Civils de Lyon (HCL)
Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Nephrology Dialysis Transplantation, Nephrology Dialysis Transplantation, Oxford University Press (OUP), 2020, ⟨10.1093/ndt/gfz295⟩, Nephrology Dialysis Transplantation, 2020, ⟨10.1093/ndt/gfz295⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Background All-cause mortality in haemodialysis (HD) is high, reaching 15.6% in the first year according to the European Renal Association. Methods A new clinical tool to predict all-cause mortality in HD patients is proposed. It uses a post hoc analysis of data from the prospective cohort study Photo-Graph V3. A total of 35 variables related to patient characteristics, laboratory values and treatments were used as predictors of all-cause mortality. The first step was to compare the results obtained using a logistic regression to those obtained by a Bayesian network. The second step aimed to increase the performance of the best prediction model using synthetic data. Finally, a compromise between performance and ergonomics was proposed by reducing the number of variables to be entered in the prediction tool. Results Among the 9010 HD patients included in the Photo-Graph V3 study, 4915 incident patients with known medical status at 2 years were analysed. All-cause mortality at 2 years was 34.1%. The Bayesian network provided the most reliable prediction. The final optimized models that used 14 variables had areas under the receiver operating characteristic curves of 0.78 ± 0.01, sensitivity of 72 ± 2%, specificity of 69 ± 2%, predictive positive value of 70 ± 1% and negative predictive value of 71 ± 2% for the prediction of all-cause mortality. Conclusions Using artificial intelligence methods, a new clinical tool to predict all-cause mortality in incident HD patients is proposed. The latter can be used for research purposes before its external validation at: https://www.hed.cc/? a=twoyearsallcausemortalityhemod&n=2-years%20All-cause%20Mortality%20Hemodialysis.neta.

Details

Language :
English
ISSN :
09310509 and 14602385
Database :
OpenAIRE
Journal :
Nephrology Dialysis Transplantation, Nephrology Dialysis Transplantation, Oxford University Press (OUP), 2020, ⟨10.1093/ndt/gfz295⟩, Nephrology Dialysis Transplantation, 2020, ⟨10.1093/ndt/gfz295⟩
Accession number :
edsair.doi.dedup.....cbfc64f53279b686891308d2f3feff01
Full Text :
https://doi.org/10.1093/ndt/gfz295⟩