Back to Search Start Over

Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis

Authors :
Andrew J. Lund
Istvan Mody
John Huang
Inma Cobos
William E. Lowry
Marcos Otero-Garcia
Justin Langerman
Ranmal A. Samarasinghe
Kathrin Plath
Damon Polioudakis
Shan Sabri
Xiaofei Wei
Bennett G. Novitch
Daniel H. Geschwind
Thomas F. Allison
Source :
Stem cell reports, vol 16, iss 10, Stem Cell Reports
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Summary The specification of inhibitory neurons has been described for the mouse and human brain, and many studies have shown that pluripotent stem cells (PSCs) can be used to create interneurons in vitro. It is unclear whether in vitro methods to produce human interneurons generate all the subtypes found in brain, and how similar in vitro and in vivo interneurons are. We applied single-nuclei and single-cell transcriptomics to model interneuron development from human cortex and interneurons derived from PSCs. We provide a direct comparison of various in vitro interneuron derivation methods to determine the homogeneity achieved. We find that PSC-derived interneurons capture stages of development prior to mid-gestation, and represent a minority of potential subtypes found in brain. Comparison with those found in fetal or adult brain highlighted decreased expression of synapse-related genes. These analyses highlight the potential to tailor the method of generation to drive formation of particular subtypes.<br />Highlights • Comparison of interneurons derived from human pluripotent cells by various methods • Single-cell analyses define heterogeneity of in vitro-derived interneurons • Direct comparison of in vitro- and in vivo-derived interneurons • Identification of transcriptional modules that developmentally define interneurons<br />Plath, Lowry and colleagues profile interneurons generated from human pluripotent stem cells by various methods to understand the heterogeneity and cellular state of interneuron cultures in vitro. Using single-cell analyses, the authors define the homogeneity and maturity achieved with each in vitro method. By directly comparing these interneurons with those born in the human brain, the authors highlight distinctions particularly in synaptic genes and transcription factor modules that distinguish in vitro- and in vivo-derived neurons.

Details

ISSN :
22136711
Volume :
16
Database :
OpenAIRE
Journal :
Stem Cell Reports
Accession number :
edsair.doi.dedup.....cbc6d8953514c6fdd9e345c634746263