Back to Search
Start Over
Current Genetic Survey and Potential Gene-Targeting Therapeutics for Neuromuscular Diseases
- Source :
- International Journal of Molecular Sciences, Vol 21, Iss 9589, p 9589 (2020), International Journal of Molecular Sciences
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Neuromuscular diseases (NMDs) belong to a class of functional impairments that cause dysfunctions of the motor neuron-muscle functional axis components. Inherited monogenic neuromuscular disorders encompass both muscular dystrophies and motor neuron diseases. Understanding of their causative genetic defects and pathological genetic mechanisms has led to the unprecedented clinical translation of genetic therapies. Challenged by a broad range of gene defect types, researchers have developed different approaches to tackle mutations by hijacking the cellular gene expression machinery to minimize the mutational damage and produce the functional target proteins. Such manipulations may be directed to any point of the gene expression axis, such as classical gene augmentation, modulating premature termination codon ribosomal bypass, splicing modification of pre-mRNA, etc. With the soar of the CRISPR-based gene editing systems, researchers now gravitate toward genome surgery in tackling NMDs by directly correcting the mutational defects at the genome level and expanding the scope of targetable NMDs. In this article, we will review the current development of gene therapy and focus on NMDs that are available in published reports, including Duchenne Muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked myotubular myopathy (XLMTM), Spinal Muscular Atrophy (SMA), and Limb-girdle muscular dystrophy Type 2C (LGMD2C).
- Subjects :
- Neuromuscular disease
Genetic enhancement
Duchenne muscular dystrophy
Computational biology
Review
Biology
Catalysis
Inorganic Chemistry
lcsh:Chemistry
Genome editing
medicine
Animals
Humans
Physical and Theoretical Chemistry
Muscular dystrophy
Molecular Biology
Gene
lcsh:QH301-705.5
Spectroscopy
duchenne muscular dystrophy
spinal muscular atrophy
Gene Editing
Clinical Trials as Topic
Organic Chemistry
Gene targeting
General Medicine
Spinal muscular atrophy
Genetic Therapy
Neuromuscular Diseases
neuromuscular disease
medicine.disease
gene therapy
Computer Science Applications
lcsh:Biology (General)
lcsh:QD1-999
CRISPR
CRISPR-Cas Systems
Subjects
Details
- Language :
- English
- ISSN :
- 16616596 and 14220067
- Volume :
- 21
- Issue :
- 9589
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences
- Accession number :
- edsair.doi.dedup.....cbba1af3dbdcf6c1efb30e0ae522c4e1