Back to Search Start Over

Midwavelength Infrared Photoluminescence and Lasing of Tellurium Elemental Solid and Microcrystals

Authors :
Kwang Seob Jeong
Dongsun Choi
Source :
The journal of physical chemistry letters. 10(15)
Publication Year :
2019

Abstract

Tellurium has been of great interest in physics, chemistry, material science, and more recently in nanoscience. However, information on the photoluminescence of Te crystals, crucial in understanding the material, has never been disclosed. Here, we present photoluminescence and lasing for the Te bulk crystal and microcrystals. Photoluminescence of Te bulk solid crystal was observed at 3.75 μm in the midwavelength infrared (MWIR) region, matching the theoretically predicted value well. With increasing the photoexcitation intensity or decreasing temperature, we successfully observed MWIR random lasing of the bulk Te crystals at 3.62 μm. Furthermore, the rod-shaped Te microcrystals efficiently exhibit second harmonic and third harmonic lasing at MWIR and short-wavelength infrared regions, respectively. Nonlinear coherent MWIR lasing from the Te microcrystals will serve as an excellent mid-IR light source, opening up new applications in infrared photonics, extremely long-depth penetration bioimaging, and optoelectronics.

Details

ISSN :
19487185
Volume :
10
Issue :
15
Database :
OpenAIRE
Journal :
The journal of physical chemistry letters
Accession number :
edsair.doi.dedup.....cb7a3322a7ec6d505c9ac5ebddd774ae