Back to Search Start Over

TRANSIT: Fine-Grained Human Mobility Trajectory Inference at Scale with Mobile Network Signaling Data

Authors :
Nour-Eddin El Faouzi
Marco Fiore
Loïc Bonnetain
Angelo Furno
Cezary Ziemlicki
Razvan Stanica
Zbigniew Smoreda
Laboratoire d'Ingénierie Circulation Transport (LICIT UMR TE )
École Nationale des Travaux Publics de l'État (ENTPE)-Université de Lyon-Université Gustave Eiffel
Institute IMDEA Networks [Madrid]
ALGorithmes et Optimisation pour Réseaux Autonomes (AGORA)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Orange Labs [Chatillon]
Orange Labs
ANR-18-CE22-0008,PROMENADE,Plateforme pour la Mobilité Multimodale Résiliente par réseaux multicouches et élaboration de données massives temps-réel(2018)
ANR-18-CE25-0011,CANCAN,Adaptation basée sur le contenu et le contexte dans les réseaux mobiles(2018)
CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Transportation research. Part C, Emerging technologies, Transportation research. Part C, Emerging technologies, 2021, 130, pp.1-34. ⟨10.1016/j.trc.2021.103257⟩, Transportation research. Part C, Emerging technologies, Elsevier, 2021, 130, pp.1-34. ⟨10.1016/j.trc.2021.103257⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Call detail records (CDR) collected by mobile phone network providers have been largely used to model and analyze human-centric mobility. Despite their potential, they are limited in terms of both spatial and temporal accuracy thus being unable to capture detailed human mobility information. Network Signaling Data (NSD) represent a much richer source of spatio-temporal information currently collected by network providers, but mostly unexploited for fine-grained reconstruction of human-centric trajectories. In this paper, we present TRANSIT, TRAjectory inference from Network SIgnaling daTa, a novel framework capable of processing NSD to accurately distinguish mobility phases from stationary activities for individual mobile devices, and reconstruct, at scale, fine-grained human mobility trajectories, by exploiting, with a DBSCAN-based clustering approach, the inherent recurrence of human mobility and the higher sampling rate of NSD. The validation on a ground-truth dataset of GPS trajectories showcases the superior performance of TRANSIT (80% precision and 96% recall) with respect to state-of-the-art solutions in the identification of movement periods, as well as an average 190 m spatial accuracy in the estimation of the trajectories. We also leverage TRANSIT to process a unique large-scale NSD dataset of more than 10 millions of individuals and perform an exploratory analysis of city-wide transport mode shares, recurrent commuting paths, urban attractivity and analysis of mobility flows. TRUE pub

Details

Language :
English
ISSN :
0968090X and 18792359
Database :
OpenAIRE
Journal :
Transportation research. Part C, Emerging technologies, Transportation research. Part C, Emerging technologies, 2021, 130, pp.1-34. ⟨10.1016/j.trc.2021.103257⟩, Transportation research. Part C, Emerging technologies, Elsevier, 2021, 130, pp.1-34. ⟨10.1016/j.trc.2021.103257⟩
Accession number :
edsair.doi.dedup.....cb75fc576bbdebfe78800b0a03f7dad3
Full Text :
https://doi.org/10.1016/j.trc.2021.103257⟩