Back to Search
Start Over
Non-arithmetically Cohen–Macaulay schemes of wild representation type
- Source :
- manuscripta mathematica. 158:149-158
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- The main goal of this short paper is to prove that any non-arithmetically Cohen–Macaulay polarized scheme $$(X,\mathscr {O}_X(1))$$ of dimension $${{\mathrm{dim}}}(X)\ge 2$$ , under mild conditions on $$\mathscr {O}_X(1)$$ , supports arbitrarily large families of non-isomorphic indecomposable aCM vector bundles with respect to $$\mathscr {O}_X(l)$$ , $$l\ge 3$$ . Namely, they are of wild representation type.
- Subjects :
- Mathematics::Commutative Algebra
General Mathematics
010102 general mathematics
Dimension (graph theory)
Mathematics::General Topology
Vector bundle
Algebraic geometry
Type (model theory)
01 natural sciences
Combinatorics
Arbitrarily large
Number theory
Scheme (mathematics)
0103 physical sciences
010307 mathematical physics
0101 mathematics
Mathematics::Representation Theory
Indecomposable module
Mathematics
Subjects
Details
- ISSN :
- 14321785 and 00252611
- Volume :
- 158
- Database :
- OpenAIRE
- Journal :
- manuscripta mathematica
- Accession number :
- edsair.doi.dedup.....cb63b8974c5fd4063956ae01fd64806c