Back to Search Start Over

Structure-based Design of Anti-cancer Vaccines: The Significance of Antigen Presentation to Boost the Immune Response

Authors :
Jesús H. Busto
Fayna García-Martín
Alicia Asín
Alberto Avenoza
Jesús M. Peregrina
Francisco Corzana
Source :
Current Medicinal Chemistry. 29:1258-1270
Publication Year :
2022
Publisher :
Bentham Science Publishers Ltd., 2022.

Abstract

Immunotherapy, alone or in combination with other therapies, is widely used against cancer. Glycoprotein Mucin 1 (MUC1), which is overexpressed and aberrantly glycosylated in tumor cells, is one of the most promising candidates to engineer new cancer vaccines. In this context, the development of stable antigens that can elicit a robust immune response is mandatory. Here, we describe the design and in vivo biological evaluation of three vaccine candidates based on MUC1 glycopeptides that comprise unnatural elements in their structure. By placing the Tn antigen (GalNAcα-O-Ser/Thr) at the center of the design, the chemical modifications include changes to the peptide backbone, glycosidic linkage, and carbohydrate level. Significantly, the three vaccines elicit robust immune responses in mice and produce antibodies that can be recognized by several human cancer cells. In all cases, a link was established between the conformational changes induced by the new elements in the antigen presentation and the immune response induced in mice. According to our data, the development of effective MUC1-based vaccines should use surrogates that mimic the conformational space of aberrantly glycosylated MUC1 glycopeptides found in tumors.

Details

ISSN :
09298673
Volume :
29
Database :
OpenAIRE
Journal :
Current Medicinal Chemistry
Accession number :
edsair.doi.dedup.....cb55dfe026e24ada05aa65991f570558
Full Text :
https://doi.org/10.2174/0929867328666210810152917