Back to Search Start Over

Sparse Satellite Constellation Design for Global and Regional Direct-to-Satellite IoT Services

Authors :
Gabriel Maiolini Capez
Santiago Henn
Juan A. Fraire
Roberto Garello
Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)
AlGorithmes et Optimisation pour Réseaux Autonomes (AGORA)
CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Lyon
Institut National de Recherche en Informatique et en Automatique (Inria)
Politecnico di Torino = Polytechnic of Turin (Polito)
Source :
IEEE Transactions on Aerospace and Electronic Systems, IEEE Transactions on Aerospace and Electronic Systems, 2022, pp.1-16. ⟨10.1109/TAES.2022.3185970⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; In this paper we introduce and design sparse constellations for Direct-to-Satellite Internet of Things (DtS-IoT). DtS-IoT does not require a ground infrastructure, because the devices are directly connected to Low Earth Orbit satellites acting as orbiting gateways. The key idea of sparse constellations is to significantly reduce the number of in-orbit DtS-IoT satellites by (i) a proper dimensioning of the delivery delay anyway present in resource-constrained IoT services, and (ii) an optimal positioning of the orbiting gateways. First, we analyze LoRa/LoRaWAN and NB-IoT standards and derive realistic constraints on the maximum gap time between two consecutive passing-by satellites. Then, we introduce and optimize an algorithm to design quasioptimal topologies for sparse IoT constellations. Finally, we apply our design to both global and regional coverage and we analyze the trade-off between latency, number of orbit planes and total number of satellites. Results show that sparse constellations can provide worldwide IoT coverage with only 12.5% and 22.5% of the satellites required by traditional dense constellations considering 3-hour and 2-hour gaps. Also, we show that regionspecific coverage of Africa and Europe can be achieved with only 4 and 3 satellites for LoRa/LoRaWAN and NB-IoT, respectively.

Details

Language :
English
ISSN :
00189251
Database :
OpenAIRE
Journal :
IEEE Transactions on Aerospace and Electronic Systems, IEEE Transactions on Aerospace and Electronic Systems, 2022, pp.1-16. ⟨10.1109/TAES.2022.3185970⟩
Accession number :
edsair.doi.dedup.....cabb96d0367b1e73c1a0bba50b4c64f9