Back to Search Start Over

SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome

Authors :
Yiwei Li
Lucian Ilie
Source :
BMC Bioinformatics, BMC Bioinformatics, Vol 18, Iss 1, Pp 1-11 (2017)
Publication Year :
2017
Publisher :
BioMed Central, 2017.

Abstract

Background Proteins perform their functions usually by interacting with other proteins. Predicting which proteins interact is a fundamental problem. Experimental methods are slow, expensive, and have a high rate of error. Many computational methods have been proposed among which sequence-based ones are very promising. However, so far no such method is able to predict effectively the entire human interactome: they require too much time or memory. Results We present SPRINT (Scoring PRotein INTeractions), a new sequence-based algorithm and tool for predicting protein-protein interactions. We comprehensively compare SPRINT with state-of-the-art programs on seven most reliable human PPI datasets and show that it is more accurate while running orders of magnitude faster and using very little memory. Conclusion SPRINT is the only sequence-based program that can effectively predict the entire human interactome: it requires between 15 and 100 min, depending on the dataset. Our goal is to transform the very challenging problem of predicting the entire human interactome into a routine task. Availability The source code of SPRINT is freely available from https://github.com/lucian-ilie/SPRINT/ and the datasets and predicted PPIs from www.csd.uwo.ca/faculty/ilie/SPRINT/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1871-x) contains supplementary material, which is available to authorized users.

Details

Language :
English
ISSN :
14712105
Volume :
18
Database :
OpenAIRE
Journal :
BMC Bioinformatics
Accession number :
edsair.doi.dedup.....caaa8e2d7972ae3e7d0cd5cc7c98a9c2