Back to Search Start Over

Unloading-Induced Cortical Bone Loss is Exacerbated by Low-Dose Irradiation During a Simulated Deep Space Exploration Mission

Authors :
Norbert Laroche
Vasily Gnyubkin
Carmelo Mastrandrea
Mieke Neefs
Arnaud Vanden-Bossche
Laurence Vico
Bjorn Baselet
Sarah Baatout
Antoine Farley
Source :
Calcified tissue international. 107(2)
Publication Year :
2020

Abstract

Spaceflight-induced bone losses have been reliably reproduced in Hind-Limb-Unloading (HLU) rodent models. However, a considerable knowledge gap exists regarding the effects of low-dose radiation and microgravity together. Ten-week-old male C57BL/6J mice, randomly allocated to Control (CONT), Hind-Limb Unloading (HLU), and Hind-Limb Unloading plus Irradiation (HLUIR), were acclimatized at 28 °C, close to thermoneutral temperature, for 28 days prior to the 14-day HLU protocol. HLUIR mice received a 25 mGy dose of X-ray irradiation, simulating 14 days of exposure to the deep space radiation environment, on day 7 of the HLU protocol. Trabecular bone mass was similarly reduced in HLU and HLUIR mice when compared to CONT, with losses driven by osteoclastic bone resorption rather than changes to osteoblastic bone formation. Femoral cortical thickness was reduced only in the HLUIR mice (102 μm, 97.5–107) as compared to CONT (108.5 μm, 102.5–120.5). Bone surface area was also reduced only in the HLUIR group, with no difference between HLU and CONT. Cortical losses were driven by osteoclastic resorption on the posterior endosteal surface of the distal femoral diaphysis, with no increase in the numbers of dead osteocytes. In conclusion, we show that low-dose radiation exposure negatively influences bone physiology beyond that induced by microgravity alone.

Details

ISSN :
14320827
Volume :
107
Issue :
2
Database :
OpenAIRE
Journal :
Calcified tissue international
Accession number :
edsair.doi.dedup.....caaa4ab5ff261654029be4b1a1466bd2