Back to Search Start Over

Semiautomatic Behavioral Change-Point Detection: A Case Study Analyzing Children Interactions With a Social Agent

Authors :
Mohamed Chetouani
Liliana Lo Presti
Salvatore Maria Anzalone
Alain Berthoz
Mohamed Zaoui
David Cohen
Soizic Gauthier
Jean Xavier
Marco La Cascia
Vito Monteleone
Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université de Poitiers
Sorbonne Université (SU)
Perception, Interaction, Robotique sociales (PIROS)
Institut des Systèmes Intelligents et de Robotique (ISIR)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Vito Monteleone
Liliana Lo Presti
Marco La Cascia
S. Gauthier
J. Xavier
M. Zaoui
A. Berthoz
D. Cohen
M. Chetouani
S. Anzalone
Université de Poitiers-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Centre de Recherches Psychanalyse, Médecine et Société (CRPMS (EA_3522))
Université Paris Diderot - Paris 7 (UPD7)
Centre interdisciplinaire de recherche en biologie (CIRB)
Labex MemoLife
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Collège de France (CdF (institution))
French National Centre for Scientific Research
Cognitions Humaine et ARTificielle (CHART)
Université Paris 8 Vincennes-Saint-Denis (UP8)-École pratique des hautes études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Nanterre (UPN)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
Source :
IEEE Transactions on Cognitive and Developmental Systems, IEEE Transactions on Cognitive and Developmental Systems, Institute of Electrical and Electronics Engineers, Inc, 2020, pp.1-1. ⟨10.1109/TCDS.2020.3023196⟩, IEEE Transactions on Cognitive and Developmental Systems, 2021, 13 (4), pp.779-790. ⟨10.1109/TCDS.2020.3023196⟩
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

The study of human behaviors in cognitive sciences provides clues to understand and describe people’s personal and interpersonal functioning. In particular, the temporal analysis of behavioral dynamics can be a powerful tool to reveal events, correlations and causalities but also to discover abnormal behaviors. However, the annotation of these dynamics can be expensive in terms of temporal and human resources. To tackle this challenge, this paper proposes a methodology to semi-automatically annotate behavioral data. Behavioral dynamics can be expressed as sequences of simple dynamical processes: transitions between such processes are generally known as change-points. This paper describes the necessary steps to detect and classify change-points in behavioral data by using a dataset collected in a real use-case scenario. This dataset includes motor observations from children with typical development and with neuro-developmental disorders. Abnormal movements which are present in such disorders are useful to validate the system in conditions that are challenging even for experienced annotators. Results show that the system: can be effective in the semi-automated annotation task; can be efficient in presence of abnormal behaviors; may achieve good performance when trained with limited manually annotated data.

Details

ISSN :
23798939 and 23798920
Volume :
13
Database :
OpenAIRE
Journal :
IEEE Transactions on Cognitive and Developmental Systems
Accession number :
edsair.doi.dedup.....caa7d10c287f886dc93a929be573f04a