Back to Search Start Over

Cancer recognition with bagged ensembles of Support Vector Machines

Authors :
Marco Muselli
Francesca Ruffino
Giorgio Valentini
Source :
Neurocomputing (Amst.) 56 (2004): 461–466. doi:10.1016/j.neucom.2003.09.001, info:cnr-pdr/source/autori:G. Valentini, M. Muselli, F. Ruffino/titolo:Cancer recognition with bagged ensembles of Support Vector Machines/doi:10.1016%2Fj.neucom.2003.09.001/rivista:Neurocomputing (Amst.)/anno:2004/pagina_da:461/pagina_a:466/intervallo_pagine:461–466/volume:56
Publication Year :
2004
Publisher :
Elsevier Science Publishers, Amsterdam , Paesi Bassi, 2004.

Abstract

Expression-based classification of tumors requires stable, reliable and variance reduction methods, as DNA microarray data are characterized by low size, high dimensionality, noise and large biological variability. In order to address the variance and curse of dimensionality problems arising from this difficult task, we propose to apply bagged ensembles of support vector machines (SVM) and feature selection algorithms to the recognition of malignant tissues. Presented results show that bagged ensembles of SVMs are more reliable and achieve equal or better classification accuracy with respect to single SVMs, whereas feature selection methods can further enhance classification accuracy.

Details

Language :
English
Database :
OpenAIRE
Journal :
Neurocomputing (Amst.) 56 (2004): 461–466. doi:10.1016/j.neucom.2003.09.001, info:cnr-pdr/source/autori:G. Valentini, M. Muselli, F. Ruffino/titolo:Cancer recognition with bagged ensembles of Support Vector Machines/doi:10.1016%2Fj.neucom.2003.09.001/rivista:Neurocomputing (Amst.)/anno:2004/pagina_da:461/pagina_a:466/intervallo_pagine:461–466/volume:56
Accession number :
edsair.doi.dedup.....ca8d77339fab9160599d3961e9579225
Full Text :
https://doi.org/10.1016/j.neucom.2003.09.001