Back to Search Start Over

Electrochemical Stability of the Reconstructed Fe3O4(001) Surface

Authors :
Gareth S. Parkinson
Sara Barja
Tim Wiegmann
Ulrike Diebold
Klaus Kern
Olaf M. Magnussen
Finn Reikowski
Fouad Maroun
Doris Grumelli
Philippe Allongue
Jan Balajka
Universidad Nacional de la Plata [Argentine] (UNLP)
Institut für Experimentelle und Angewandte Physik [Kiel] (IEAP)
Christian-Albrechts-Universität zu Kiel (CAU)
University of the Basque Country [Bizkaia] (UPV/EHU)
Christian-Albrechts University of Kiel
Laboratoire de physique de la matière condensée (LPMC)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Institute of Applied Physics [Vienna] (TU Wien)
Vienna University of Technology (TU Wien)
Max Planck Institute for Solid State Research
Max-Planck-Gesellschaft
Agence Nationale de la Recherche (France)
European Commission
European Research Council
Austrian Science Fund
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
German Research Foundation
Eusko Jaurlaritza
Fondo para la Investigación Científica y Tecnológica (Argentina)
Source :
Angewandte Chemie International Edition, Angewandte Chemie International Edition, Wiley-VCH Verlag, 2020, 59 (49), pp.21904-21908. ⟨10.1002/anie.202008785⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

HAL Id: hal-03021641 https://hal.archives-ouvertes.fr/hal-03021641<br />Establishing the atomic‐scale structure of metal‐oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)‐oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X‐ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between −0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm−2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.<br />We gratefully acknowledge financial support by AGENCIA PICT 20141415 and 2016069, EC‐MEC (ANR‐15‐CE30‐0024‐01 and DFG‐Ma1618/2020), European Research Council—European Union's Horizon 2020 (864628), Austrian Science Fund FWF (Project Z‐250 Wittgenstein Prize), and RyC program RYC‐2017‐21931 and Basque Government Project (IT‐1255‐19). D.G. acknowledges Federico López for assistance with the TOC. We thank the ESRF for the PhD fellowship for T.W. and the ID03 beamline staff—in particular H. Isern.

Details

Language :
English
ISSN :
14337851 and 15213773
Database :
OpenAIRE
Journal :
Angewandte Chemie International Edition, Angewandte Chemie International Edition, Wiley-VCH Verlag, 2020, 59 (49), pp.21904-21908. ⟨10.1002/anie.202008785⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....ca8b9b726ff84029113dcc442e6e23a3