Back to Search Start Over

A framework for quantifying net benefits of alternative prognostic models

Authors :
Rapsomaniki, E.
White, I. R.
Wood, A. M.
Thompson, S. G.
Tipping, R. W.
Ford, C. E.
Simpson, L. M.
Folsom, A. R.
Chambless, L. E.
Panagiotakos, D. B.
Pitsavos, C.
Chrysohoou, C.
Stefanadis, C.
Knuiman, M.
Whincup, P. H.
Wannamethee, S. G.
Morris, R. W.
Kiechl, S.
Willeit, J.
Oberhollenzer, F.
Mayr, A.
Wald, N.
Lawlor, D. A.
Yarnell, J. W.
Gallacher, J.
Casiglia, E.
Tikhonoff, V.
Nietert, P. J.
Sutherland, S. E.
Bachman, D. L.
Keil, J. E.
Cushman, M.
Tracy, R.
Tybjaerg-Hansen, A.
Nordestgaard, B. G.
Frikke-Schmidt, R.
Giampaoli, S.
Palmieri, L.
Panico, S.
Vanuzzo, D.
Pilotto, L.
Gomez de la Camara, A.
Gomez Gerique, J. A.
Simons, L.
Mccallum, J.
Friedlander, Y.
Lee, A. J.
Taylor, J.
Guralnik, J. M.
Wallace, R.
Blazer, D. G.
Khaw, K. -T.
Schottker, B.
Muller, H.
Rothenbacher, D.
Jansson, J. -H.
Wennberg, P.
Nissinen, A.
Donfrancesco, C.
Salomaa, V.
Harald, K.
Jousilahti, P.
Vartiainen, E.
Woodward, M.
D'Agostino Sr, R. B.
Wolf, P. A.
Vasan, R. S.
Pencina, M. J.
Bladbjerg, E. -M.
Jorgensen, T.
Moller, L.
Jespersen, J.
Dankner, R.
Chetrit, A.
Lubin, F.
Rosengren, A.
Lappas, G.
Eriksson, H.
Bjorkelund, C.
Lissner, L.
Bengtsson, C.
Nagel, D.
Kiyohara, Y.
Arima, H.
Doi, Y.
Ninomiya, T.
Rodriguez, B.
Dekker, J. M.
Nijpels, G.
Stehouwer, C. D. A.
Iso, H.
Kitamura, A.
Yamagishi, K.
Noda, H.
Goldbourt, U.
Kauhanen, J.
Salonen, J. T.
Cooper, J. A.
Verschuren, W. M. M.
Blokstra, A.
Shea, S.
Doring, A.
Meisinger, C.
Bueno-de-Mesquita, H. B.
Kuller, L. H.
Grandits, G.
Gillum, R. F.
Mussolino, M.
Bauer, K. A.
Kirkland, S.
Shaffer, J.
Korin, M. R.
Sato, S.
Amouyel, P.
Arveiler, D.
Evans, A.
Ferrieres, J.
Schulte, H.
Assmann, G.
Westendorp, R. G.
Buckley, B. M.
Packard, C. J.
Sattar, N.
Cantin, B.
Despres, J. -P.
Dagenais, G. R.
Barrett-Connor, E.
Wingard, D. L.
Bettencourt, R.
Gudnason, V.
Aspelund, T.
Sigurdsson, G.
Thorsson, B.
Witteman, J.
Kardys, I.
Tiemeier, H.
Hofman, A.
Tunstall-Pedoe, H.
Tavendale, R.
Lowe, G. D. O.
Howard, B. V.
Zhang, Y.
Best, L.
Umans, J.
Ben-Shlomo, Y.
Davey-Smith, G.
Njolstad, I.
Wilsgaard, T.
Ingelsson, E.
Lind, L.
Giedraitis, V.
Lannfelt, L.
Gaziano, J. M.
Stampfer, M.
Ridker, P.
Wassertheil-Smoller, S.
Manson, J. E.
Marmot, M.
Clarke, R.
Fletcher, A.
Brunner, E.
Shipley, M.
Buring, J.
Shepherd, J.
Cobbe, S. M.
Ford, I.
Robertson, M.
Marin Ibanez, A.
Feskens, E. J. M.
Kromhout, D.
Interne Geneeskunde
RS: CARIM School for Cardiovascular Diseases
Source :
Statistics in Medicine, 31(2), 114-130, Statistics in Medicine, Statistics in Medicine 31 (2012) 2, Statistics in Medicine, 31(2), 114-130. John Wiley & Sons Inc., Rapsomaniki, E, White, I R, Wood, A M, Thompson, S G, Emerging Risk Factors Collaboration, Bladbjerg, E-M & Jespersen, J 2012, ' A framework for quantifying net benefits of alternative prognostic models ', Statistics in Medicine, vol. 31, no. 2, pp. 114-30 . https://doi.org/10.1002/sim.4362
Publication Year :
2012

Abstract

New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk reduction interventions. We extend previous work in this area by quantifying net benefits in life years, thus linking prognostic performance to health economic measures; by taking full account of the occurrence of events over time; and by considering estimation and cross-validation in a multiple-study setting. The method is illustrated in the context of cardiovascular disease risk prediction using an individual participant data meta-analysis. We estimate the number of cardiovascular-disease-free life years gained when statin treatment is allocated based on a risk prediction model with five established risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing risks. Copyright © 2011 John Wiley & Sons, Ltd.

Details

Language :
English
ISSN :
02776715
Database :
OpenAIRE
Journal :
Statistics in Medicine, 31(2), 114-130, Statistics in Medicine, Statistics in Medicine 31 (2012) 2, Statistics in Medicine, 31(2), 114-130. John Wiley & Sons Inc., Rapsomaniki, E, White, I R, Wood, A M, Thompson, S G, Emerging Risk Factors Collaboration, Bladbjerg, E-M & Jespersen, J 2012, ' A framework for quantifying net benefits of alternative prognostic models ', Statistics in Medicine, vol. 31, no. 2, pp. 114-30 . https://doi.org/10.1002/sim.4362
Accession number :
edsair.doi.dedup.....ca6cacdc33d665e78f14a96d65d76f84
Full Text :
https://doi.org/10.1002/sim.4362