Back to Search Start Over

Prediction of long-term memory scores in MCI based on resting-state fMRI

Authors :
Stephan Morgenthaler
Maria Giulia Preti
Marie-Louise Montandon
Cristelle Rodriguez
Sven Haller
Panteleimon Giannakopoulos
Thomas A. W. Bolton
Djalel Eddine Meskaldji
Dimitri Van De Ville
Source :
NeuroImage : Clinical, NeuroImage: Clinical, Vol 12, Iss C, Pp 785-795 (2016), NeuroImage: Clinical, Vol. 12 (2016) pp. 785-795
Publication Year :
2016
Publisher :
Uppsala universitet, Radiologi, 2016.

Abstract

Resting-state functional MRI (rs-fMRI) opens a window on large-scale organization of brain function. However, establishing relationships between resting-state brain activity and cognitive or clinical scores is still a difficult task, in particular in terms of prediction as would be meaningful for clinical applications such as early diagnosis of Alzheimer's disease. In this work, we employed partial least square regression under cross-validation scheme to predict episodic memory performance from functional connectivity (FC) patterns in a set of fifty-five MCI subjects for whom rs-fMRI acquisition and neuropsychological evaluation was carried out. We show that a newly introduced FC measure capturing the moments of anti-correlation between brain areas, discordance, contains key information to predict long-term memory scores in MCI patients, and performs better than standard measures of correlation to do so. Our results highlighted that stronger discordance within default mode network (DMN) areas, as well as across DMN, attentional and limbic networks, favor episodic memory performance in MCI.<br />Highlights • We use PLS to predict memory scores from resting-state fMRI. • We compare prediction performance of different functional connectivity measures. • We highlight the role of anti-correlation in memory-score prediction. • We highlight the role of default-mode network in episodic memory.

Details

Language :
English
ISSN :
22131582
Database :
OpenAIRE
Journal :
NeuroImage : Clinical, NeuroImage: Clinical, Vol 12, Iss C, Pp 785-795 (2016), NeuroImage: Clinical, Vol. 12 (2016) pp. 785-795
Accession number :
edsair.doi.dedup.....ca48cc471ab4b57705fab715f8a041cf