Back to Search
Start Over
1800 MHz radiofrequency fields inhibits testosterone production via CaMKI /RORα pathway
- Source :
- Reproductive toxicology (Elmsford, N.Y.). 81
- Publication Year :
- 2018
-
Abstract
- Exposure to radiofrequency fields (RF) has been reported to induce adverse effects on testosterone production and its daily rhythm. However, the mechanisms underneath this effect remain unknown. In this study, male mice were exposed to 1800 MHz radiofrequency fields (RF, 40 μW/cm2 power intensity and 0.0553 W/Kg SAR) 2 h per day for 32 days. The data suggested that RF exposure: (i) significantly reduced testosterone levels, (ii) altered the expression of genes involved in its synthesis (Star, P450scc, P450c17 and 3β-Hsd) in testicular tissue, (iii) significantly reduced regulatory protein CaMKI/RORα. Similar observations were also made in cultured primary Leydig cells exposed in vitro to RF. However, all of these observations were blocked by CaMK inhibitor, KN-93, and ionomycin reversed the down-regulation effects on intracellular [Ca2+]i and CaMKI/RORα expression induced by RF exposure. Thus, the data provided the evidence that RF-induced inhibition of testosterone synthesis might be mediated through CaMKI/RORα signaling pathway. Capsule: CaMKI/RORα signaling pathway was involved in the inhibition of testosterone synthesis induced by RF exposure.
- Subjects :
- 0301 basic medicine
Male
endocrine system
Benzylamines
Radio Waves
Toxicology
03 medical and health sciences
chemistry.chemical_compound
Animals
Testosterone
CAMK
Cells, Cultured
Regulation of gene expression
Sulfonamides
Chemistry
Cholesterol side-chain cleavage enzyme
Ionomycin
Leydig Cells
Nuclear Receptor Subfamily 1, Group F, Member 1
In vitro
Cell biology
Mice, Inbred C57BL
030104 developmental biology
Calcium-Calmodulin-Dependent Protein Kinase Type 1
Signal transduction
Intracellular
Signal Transduction
Subjects
Details
- ISSN :
- 18731708
- Volume :
- 81
- Database :
- OpenAIRE
- Journal :
- Reproductive toxicology (Elmsford, N.Y.)
- Accession number :
- edsair.doi.dedup.....ca3d232ba58bdb01b7b409c8afe24413