Back to Search Start Over

Normative human brain volume growth

Authors :
Benjamin C. Warf
Steven J. Schiff
Mallory R. Peterson
Source :
Journal of Neurosurgery: Pediatrics. 21:478-485
Publication Year :
2018
Publisher :
Journal of Neurosurgery Publishing Group (JNSPG), 2018.

Abstract

OBJECTIVEWhile there is a long history of interest in measuring brain growth, as of yet there is no definitive model for normative human brain volume growth. The goal of this study was to analyze a variety of candidate models for such growth and select the model that provides the most statistically applicable fit. The authors sought to optimize clinically applicable growth charts that would facilitate improved treatment and predictive management for conditions such as hydrocephalus.METHODSThe Weibull, two-term power law, West ontogenic, and Gompertz models were chosen as potential models. Normative brain volume data were compiled from the NIH MRI repository, and the data were fit using a nonlinear least squares regression algorithm. Appropriate statistical measures were analyzed for each model, and the best model was characterized with prediction bound curves to provide percentile estimates for clinical use.RESULTSEach model curve fit and the corresponding statistics were presented and analyzed. The Weibull fit had the best statistical results for both males and females, while the two-term power law generated the worst scores. The statistical measures and goodness of fit parameters for each model were provided to assure reproducibility.CONCLUSIONSThe authors identified the Weibull model as the most effective growth curve fit for both males and females. Clinically usable growth charts were developed and provided to facilitate further clinical study of brain volume growth in conditions such as hydrocephalus. The authors note that the homogenous population from which the normative MRI data were compiled limits the study. Gaining a better understanding of the dynamics that underlie childhood brain growth would yield more predictive growth curves and improved neurosurgical management of hydrocephalus.

Details

ISSN :
19330715 and 19330707
Volume :
21
Database :
OpenAIRE
Journal :
Journal of Neurosurgery: Pediatrics
Accession number :
edsair.doi.dedup.....ca110da31028d5272f731f23a1925d8b