Back to Search
Start Over
Poroviscoelasticity and compression-softening of agarose hydrogels
- Source :
- Rheologica Acta, Rheologica Acta, Springer Verlag, 2021
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- Agarose hydrogels are poroviscoelastic materials that exhibit a waterlogged-crosslinked microstructure. Despite an extensive use in biotechnologies and numerous studies of the elastic properties of agarose gels, little is known about the compressible behavior and the microstructural changes of such fibrillar hydrogels under compression. The present work investigates the mechanical response of centimeter-sized pre-molded agarose cylinders when applying a compressive strain ramp over an extended range of loading speed and polymer concentration. One of the original contributions is the simultaneous monitoring of the changes in the hydrogel volume to determine the Poisson’s ratio through a spatiotemporal method. The linear poroelastic response of agarose hydrogels shows a compressible behavior at strain rates less than 0.7 % s−1. The critical compressive strain of a few percent at the onset of the non-linear regime and the always positive Poisson’s ratio decrease when applying a slow compressive ramp. The mechanical response in the linear regime is typical of a deformation mode either dominated by the bending of semiflexible strands (enthalpic regime) or by the stretching of the network (entropic regime) at higher agarose concentration. Cyclic linear shear deformations superimposed to a compressive strain from 0.5 up to 40% further give evidence of a compression-softening of the network causing the transition to the non-linear regime without dependence upon the network topology and connectivity. Finally, the buckling-induced aging of the network under a weak compression and the poroviscoelasticity of the hydrogel are shown to impact the relaxation of the normal stress and the equilibrium stress.
- Subjects :
- Materials science
Poromechanics
Bending
macromolecular substances
01 natural sciences
010305 fluids & plasmas
[PHYS] Physics [physics]
Stress (mechanics)
Softening
chemistry.chemical_compound
0103 physical sciences
General Materials Science
Compression (geology)
Composite material
[PHYS]Physics [physics]
Quantitative Biology::Biomolecules
010304 chemical physics
Buckling
technology, industry, and agriculture
Biopolymer hydrogel
Compression
Poroelasticity
Poisson's ratio
Condensed Matter Physics
Condensed Matter::Soft Condensed Matter
chemistry
Self-healing hydrogels
Agarose
Deformation (engineering)
Subjects
Details
- Language :
- English
- ISSN :
- 00354511 and 14351528
- Database :
- OpenAIRE
- Journal :
- Rheologica Acta, Rheologica Acta, Springer Verlag, 2021
- Accession number :
- edsair.doi.dedup.....ca0bb6e9e2f7f7d18dcdc5c29db6679b