Back to Search Start Over

Spin-probes designed for measuring the intrathylakoid pH in chloroplasts

Authors :
Igor A. Kirilyuk
Vasilii V. Ptushenko
Boris V. Trubitsin
Alexander N. Tikhonov
Roman V. Agafonov
Igor A. Grigor'ev
Source :
Biochimica et biophysica acta. 1777(3)
Publication Year :
2007

Abstract

Nitroxide radicals are widely used as molecular probes in different fields of chemistry and biology. In this work, we describe pH-sensitive imidazoline- and imidazolidine-based nitroxides with pK values in the range 4.7-7.6 (2,2,3,4,5,5-hexamethylperhydroimidazol-1-oxyl, 4-amino-2,2,5,5-tetramethyl-2,5-dihydro-1H-imidazol-1-oxyl, 4-dimethylamino-2,2-diethyl-5,5-dimethyl-2,5-dihydro-1H-imidazol-1-oxyl, and 2,2-diethyl-5,5-dimethyl-4-pyrrolidyline-1-yl-2,5-dihydro-1H-imidazol-1-oxyl), which allow the pH-monitoring inside chloroplasts. We have demonstrated that EPR spectra of these spin-probes localized in the thylakoid lumen markedly change with the light-induced acidification of the thylakoid lumen in chloroplasts. Comparing EPR spectrum parameters of intrathylakoid spin-probes with relevant calibrating curves, we could estimate steady-state values of lumen pHin established during illumination of chloroplasts with continuous light. For isolated bean (Vicia faba) chloroplasts suspended in a medium with pHout=7.8, we found that pHin approximately 5.4-5.7 in the state of photosynthetic control, and pHin approximately 5.7-6.0 under photophosphorylation conditions. Thus, ATP synthesis occurs at a moderate acidification of the thylakoid lumen, corresponding to transthylakoid pH difference DeltapH approximately 1.8-2.1. These values of DeltapH are consistent with a point of view that under steady-state conditions the proton gradient DeltapH is the main contributor to the proton motive force driving the operation of ATP synthesis, provided that stoichiometric ratio H+/ATP is nor =4-4.7.

Details

ISSN :
00063002
Volume :
1777
Issue :
3
Database :
OpenAIRE
Journal :
Biochimica et biophysica acta
Accession number :
edsair.doi.dedup.....c9fbbaad771465fdee4daa4a20d21ef7