Back to Search
Start Over
Climatic impacts on the bacterial community profiles of cork oak soils
- Source :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Publication Year :
- 2018
-
Abstract
- Climate changes comprise increasing global temperature and water cycle deregulation (precipitation storms and long dry seasons). Many affected ecosystems are located within the Mediterranean basin, where cork oak (Quercus suber L.) is one of the most important forest ecosystems. Despite cork oak tolerance to drought, the decrease of water availability and increase of temperature is causing a serious decline of cork oak populations. In the present work, the bacterial community of cork oak soils was assessed by metabarcoding using Illumina Miseq. Soils from seven independent cork oak forests were collected along a climate gradient. In all forest soils, Proteobacteria and Actinobacteria were the richest and more abundant bacteria. Acidobacteria also presented a high relative abundance, and Chloroflexi was a rich phylum. The soil bacterial community diversity and composition was strongly affected by the climatic region where cork oak resides and specific bacterial taxa were differently affected by precipitation and temperature. Accordingly, cork oak bacterial communities clustered into three distinct groups, related with humid, sub-humid and arid/semi-arid climates. Driest and warmer forests presented more diverse bacterial communities than humid and coolest forests. However, driest climates presented more homogenous bacterial communities among forests than humid climates. Climate (mainly precipitation) revealed to be the strongest driver leading to significant variations of bacterial community profiles. The most impacted bacterial taxa by climatic variables were Proteobacteria, in particular Gammaproteobacteria and Deltaproteobacteria, Chloroflexi, and Firmicutes. Humid forests presented mainly Acidobacteria as good indicators of climate, whereas Actinobacteria members were better indicators for arid forests (mainly Gaiellales and Frankiales). Some indicator species for different climate conditions were members of the bacterial core of cork oak stands (7% of the total bacterial community). Taken together, different<br />This work was supported by FEDER through the Operational Competitiveness Program (COMPETE) and by Portuguese national funds through the Foundation for Science and Technology (FCT) within the scope of the project POCI-01-0145-FEDER-028635; FCT/MCTES/PIDDAC (Portugal) under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012).
- Subjects :
- Climate
Ciências Biológicas [Ciências Naturais]
Soil Science
Quercus suber
Cork
engineering.material
Mediterranean Basin
03 medical and health sciences
Forest ecology
Ecosystem
Forest soils
030304 developmental biology
2. Zero hunger
0303 health sciences
Ciências Naturais::Ciências Biológicas
Science & Technology
Ecology
biology
030306 microbiology
15. Life on land
biology.organism_classification
Agricultural and Biological Sciences (miscellaneous)
Arid
Bacterial communities
13. Climate action
Indicator species
engineering
Cork oak
Environmental science
Acidobacteria
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Accession number :
- edsair.doi.dedup.....c9f9bd1690af966be49cd8ecddf321e5