Back to Search
Start Over
Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels
- Source :
- eLife, eLife, Vol 4 (2015), eLife, vol 4, iss 4, Li, X; Yu, VY; Lin, Y; Chomvong, K; Estrela, R; Park, A; et al.(2015). Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels. eLife, 2015(4), 1-55. doi: 10.7554/eLife.05896. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/14r6p14t
- Publication Year :
- 2015
- Publisher :
- eLife Sciences Publications, Ltd, 2015.
-
Abstract
- Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001<br />eLife digest Plants can be used to make ‘biofuels’, which are more sustainable alternatives to traditional fuels made from petroleum. Unfortunately, most biofuels are currently made from simple sugars or starch extracted from parts of plants that we also use for food, such as the grains of cereal crops. Making biofuels from the parts of the plant that are not used for food—for example, the stems or leaves—would enable us to avoid a trade-off between food and fuel production. However, most of the sugars in these parts of the plant are locked away in the form of large, complex carbohydrates called cellulose and hemicellulose, which form the rigid cell wall surrounding each plant cell. Currently, the industrial processes that can be used to make biofuels from plant cell walls are expensive and use a lot of energy. They involve heating or chemically treating the plant material to release the cellulose and hemicellulose. Then, large quantities of enzymes are added to break these carbohydrates down into simple sugars that can then be converted into alcohol (a biofuel) by yeast. Fungi may be able to provide us with a better solution. Many species are able to grow on plants because they can break down cellulose and hemicellulose into simple sugars they can use for energy. If the genes involved in this process could be identified and inserted into yeast it may provide a new, cheaper method to make biofuels from plant cell walls. To address this challenge, Li et al. studied how the fungus Neurospora crassa breaks down hemicellulose. This study identified a protein that can transport molecules of xylodextrin—which is found in hemicellulose—into the cells of the fungus, and two enzymes that break down the xylodextrin to make simple sugars, using a previously unknown chemical intermediate. When Li et al. inserted the genes that make the transport protein and the enzymes into yeast, the yeast were able to use plant cell wall material to make simple sugars and convert these to alcohol. The yeast used more of the xylodextrin when they were grown with an additional source of energy, such as the sugars glucose or sucrose. Li et al.'s findings suggest that giving yeast the ability to break down hemicellulose has the potential to improve the efficiency of biofuel production. The next challenge will be to improve the process so that the yeast can convert the xylodextrin and simple sugars more rapidly. DOI: http://dx.doi.org/10.7554/eLife.05896.002
- Subjects :
- QH301-705.5
xylosyl-xylitol
Science
Saccharomyces cerevisiae
S. cerevisiae
Xylose
Xylitol
General Biochemistry, Genetics and Molecular Biology
Neurospora crassa
Cell wall
chemistry.chemical_compound
computational biology
Affordable and Clean Energy
Xylose metabolism
Cell Wall
B. subtilis
Hemicellulose
Biology (General)
cofermentation
General Immunology and Microbiology
biology
Ecology
General Neuroscience
fungi
E. coli
food and beverages
N. crassa
systems biology
General Medicine
hemicellulose
Plants
biology.organism_classification
Yeast
chemistry
Biochemistry
Biofuels
xylodextrin
Medicine
biofuel
Biochemistry and Cell Biology
Other
ecology
Responsible Consumption and Production
Research Article
Computational and Systems Biology
Subjects
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 4
- Database :
- OpenAIRE
- Journal :
- eLife
- Accession number :
- edsair.doi.dedup.....c9cb434f5c74cb937b5d70bbe15c65de
- Full Text :
- https://doi.org/10.7554/eLife.05896.