Back to Search Start Over

Prospects for Detecting Volcanic Events with Microwave Radiometry

Authors :
Ralph D. Lorenz
Shannon MacKenzie
Source :
Remote Sensing, Vol 12, Iss 2544, p 2544 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Identifying volcanic activity on worlds with optically thick atmospheres with passive microwave radiometry has been proposed as a means of skirting the atmospheric interference that plagues near infrared observations. By probing deeper into the surface, microwave radiometers may also be sensitive to older flows and thus amenable for investigations where repeat observations are infrequent. In this investigation we explore the feasibility of this tactic using data from the Soil Moisture Active Passive (SMAP) mission in three case studies: the 2018 Kilauea eruption, the 2018 Oct-Nov eruption at Fuego, and the ongoing activity at Erta Ale in Ethiopia. We find that despite SMAP’s superior spatial resolution, observing flows that are small fractions of the observing footprint are difficult to detect—even in resampled data products. Furthermore, the absorptivity of the flow, which can be temperature dependent, can limit the depths to which SMAP is sensitive. We thus demonstrate that the lower limit of detectability at L-band (1.41 GHz) is in practice higher than expected from first principles.

Details

ISSN :
20724292
Volume :
12
Database :
OpenAIRE
Journal :
Remote Sensing
Accession number :
edsair.doi.dedup.....c9b878c3e053a4a29fb75cdeac8d32bb