Back to Search Start Over

Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing d-xylose fermentation by recombinant Saccharomyces cerevisiae

Authors :
Akinori Matsushika
Davi Gonçalves
Elba P. S. Bon
Bruna Scheid
Marilia M. Knychala
Boris U. Stambuk
Belisa B. de Sales
Source :
Biotechnology Letters. 37:1973-1982
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Since uptake of xylose limits its fermentation, we aimed to identify novel sugar transporters from Scheffersomyces stipitis that allow xylose uptake and fermentation by engineered Saccharomyces cerevisiae.An hxt-null S. cerevisiae strain, lacking the major hexose transporters (hxt1Δ-hxt7Δ and gal2Δ) but having high xylose reductase, xylitol dehydrogenase and xylulokinase activities, was transformed with a genomic DNA library from S. stipitis. Four plasmids allowing growth on xylose contained three genes encoding sugar transporters: the previously characterized XUT1 permease, and two new genes (HXT2.6 and QUP2) not previously identified as xylose transporters. High cell density fermentations with the recombinant strains showed that the XUT1 gene allowed ethanol production from xylose or xylose plus glucose as carbon sources, while the HXT2.6 permease produced both ethanol and xylitol, and the strain expressing the QUP2 gene produced mainly xylitol during xylose consumption.Cloning novel sugar transporters not previously identified in the S. stipitis genome using an hxt-null S. cerevisiae strain with a high xylose-utilizing pathway provides novel promising target genes for improved lignocellulosic ethanol production by yeasts.

Details

ISSN :
15736776 and 01415492
Volume :
37
Database :
OpenAIRE
Journal :
Biotechnology Letters
Accession number :
edsair.doi.dedup.....c9a9ce75cd54438371470376e075d0a7
Full Text :
https://doi.org/10.1007/s10529-015-1893-2