Back to Search Start Over

Autoregressive Moving Average Infinite Hidden Markov-Switching Models

Authors :
Jean-François Carpantier
Luc Bauwens
Arnaud Dufays
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI)
Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919)
Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
Centre d'Études et de Recherche en Gestion d'Aix-Marseille (CERGAM)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)
Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919)
Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
UCL - SSH/IMMAQ/CORE - Center for operations research and econometrics
Source :
Journal of Business and Economic Statistics, Journal of Business and Economic Statistics, Taylor & Francis, 2017, 35 (2), pp.162-182. ⟨10.1080/07350015.2015.1123636⟩, Journal of Business & Economic Statistics, Journal of Business and Economic Statistics, 2017, 35 (2), pp.162-182. ⟨10.1080/07350015.2015.1123636⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Markov-switching models are usually specified under the assumption that all the parameters change when a regime switch occurs. Relaxing this hypothesis and being able to detect which parameters evolve over time is relevant for interpreting the changes in the dynamics of the series, for specifying models parsimoniously, and may be helpful in forecasting. We propose the class of sticky infinite hidden Markov-switching autoregressive moving average models, in which we disentangle the break dynamics of the mean and the variance parameters. In this class, the number of regimes is possibly infinite and is determined when estimating the model, thus avoiding the need to set this number by a model choice criterion. We develop a new Markov chain Monte Carlo estimation method that solves the path dependence issue due to the moving average component. Empirical results on macroeconomic series illustrate that the proposed class of models dominates the model with fixed parameters in terms of point and density forecasts. Appendix available at: https://ssrn.com/abstract=2965668

Details

ISSN :
15565068, 07350015, and 15372707
Database :
OpenAIRE
Journal :
SSRN Electronic Journal
Accession number :
edsair.doi.dedup.....c974a94c1408eca97b1fb5bbe5f493e4
Full Text :
https://doi.org/10.2139/ssrn.2965441