Back to Search Start Over

Nebulization of ultradeformable liposomes: The influence of aerosolization mechanism and formulation excipients

Authors :
Waqar Ahmed
David Andrew Phoenix
Kevin M.G. Taylor
Anna A. Stec
Joanna Giebułtowicz
Piotr Wroczyński
Mohamed Albed Alhnan
Adbelbary Elhissi
Source :
International Journal of Pharmaceutics. 436:519-526
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Ultradeformable liposomes are stress-responsive phospholipid vesicles that have been investigated extensively in transdermal delivery. In this study, the suitability of ultradeformable liposomes for pulmonary delivery was investigated. Aerosols of ultradeformable liposomes were generated using air-jet, ultrasonic or vibrating-mesh nebulizers and their stability during aerosol generation was evaluated using salbutamol sulphate as a model hydrophilic drug. Although delivery of ultradeformable liposome aerosols in high fine particle fraction was achievable, the vesicles were very unstable to nebulization so that up to 98% drug losses were demonstrated. Conventional liposomes were relatively less unstable to nebulization. Moreover, ultradeformable liposomes tended to aggregate during nebulization whilst conventional vesicles demonstrated a "size fractionation" behaviour, with smaller liposomes delivered to the lower stage of the impinger and larger vesicles to the upper stage. A release study conducted for 2 h showed that ultradeformable liposomes retained only 30% of the originally entrapped drug, which was increased to 53% by inclusion of cholesterol within the formulations. By contrast, conventional liposomes retained 60-70% of the originally entrapped drug. The differences between ultradeformable liposomes and liposomes were attributed to the presence of ethanol or Tween 80 within the elastic vesicle formulations. Overall, this study demonstrated, contrary to our expectation, that materials included with the aim of making the liposomes more elastic and ultradeformable to enhance delivery from nebulizers were in fact responsible for vesicle instability during nebulization and high leakage rates of the drug.

Details

ISSN :
03785173
Volume :
436
Database :
OpenAIRE
Journal :
International Journal of Pharmaceutics
Accession number :
edsair.doi.dedup.....c96b64f91d3416b645d4660721634e17
Full Text :
https://doi.org/10.1016/j.ijpharm.2012.06.064