Back to Search Start Over

The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N ‐acetylglucosamine production

Authors :
Guocheng Du
Jianghua Li
Yanfeng Liu
Xueqin Lv
Tengfei Niu
Rodrigo Ledesma-Amaro
Long Liu
Source :
Biotechnology and Bioengineering. 118:383-396
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

Bacillus subtilis is a preferred microbial host for the industrial production of nutraceuticals and a promising candidate for the synthesis of functional sugars, such as N-acetylglucosamine (GlcNAc). Previously, a GlcNAc-overproducer Bacillus subtilis SFMI was constructed using glmS ribozyme dual regulatory tool. Herein, we further engineered to enhance carbon flux from glucose towards GlcNAc synthesis. As a result, the increased flux towards GlcNAc synthesis triggered phosphosugar stress response, which caused abnormal cell growth. Unfortunately, the mechanism of phosphosugar stress response had not been elucidated in B. subtilis. In order to reveal stress mechanism and overcome its negative effect in bioproduction, we performed comparative transcriptome analysis. The results indicate that cells slow glucose utilization by repression of glucose import and accelerate catabolic reactions of phosphosugar. To verify these results, we overexpressed the phosphatase YwpJ, which relieved phosphosugar stress and allowed us to identify the enzyme responsible for GlcNAc synthesis from GlcNAc6P. In addition, the deletion of nagBB and murQ, responsible for GlcNAc precursor degradation, further improved GlcNAc synthesis. The best engineered strain, B. subtilis FMIP34, increased GlcNAc titer from 11.5 to 26.1 g/L in shake flasks and produced 87.5 g/L GlcNAc in 30-L fed-batch bioreactor. Our results not only elucidate, for the first time, the phosphosugar stress response mechanism in B. subtilis, but also demonstrate how the combination of rational metabolic engineering with novel insights into physiology and metabolism allows the construction of highly efficient microbial cell factories for the production of high value chemicals. This article is protected by copyright. All rights reserved.

Details

ISSN :
10970290 and 00063592
Volume :
118
Database :
OpenAIRE
Journal :
Biotechnology and Bioengineering
Accession number :
edsair.doi.dedup.....c95bf659d7b140be1ec63926c7328766
Full Text :
https://doi.org/10.1002/bit.27577