Back to Search
Start Over
Experimentally Aided Development of a Turbine Heat Transfer Prediction Method
- Source :
- Volume 3: Turbo Expo 2002, Parts A and B.
- Publication Year :
- 2002
- Publisher :
- ASMEDC, 2002.
-
Abstract
- In the design of cooled turbomachinery blading a central role is played by the computer methods used to optimise the aerodynamic and thermal performance of the turbine aerofoils. Estimates of the heat load on the turbine blading should be as accurate as possible, in order that adequate life may be obtained with the minimum cooling air requirement. Computer methods are required which are able to model transonic flows, which are a mixture of high temperature combustion gases and relatively cool air injected through holes in the aerofoil surface. These holes may be of complex geometry, devised after empirical studies of the optimum shape and the most cost effective manufacturing technology. The method used here is a further development of the heat transfer design code (HTDC), originally written by Rolls-Royce plc under subcontract to Rolls-Royce Inc for the United States Air Force. The physical principles of the modelling employed in the code are explained without extensive mathematical details. The paper describes the calibration of the code in conjunction with a series of experimental measurements on a scale model of a high-pressure nozzle guide vane at non-dimensionally correct engine conditions. The results are encouraging, although indicating that some further work is required in modelling highly accelerated pressure surface flow.
- Subjects :
- Fluid Flow and Transfer Processes
Airfoil
Engineering
Computer simulation
Turbine blade
Computer science
business.industry
Mechanical Engineering
Nozzle
Mechanical engineering
Aerodynamics
Condensed Matter Physics
Turbine
law.invention
law
Turbomachinery
Heat transfer
business
Scale model
Transonic
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Volume 3: Turbo Expo 2002, Parts A and B
- Accession number :
- edsair.doi.dedup.....c93294b7222ebd00e9449f7eeeb45288
- Full Text :
- https://doi.org/10.1115/gt2002-30196