Back to Search Start Over

A Calabi-Yau algebra with $E_6$ symmetry and the Clebsch-Gordan series of $sl(3)$

Authors :
Crampe, N.
Poulain d'Andecy, L.
Vinet, L.
Institut Denis Poisson (IDP)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Université de Reims Champagne-Ardenne (URCA)
Laboratoire de Mathématiques de Reims (LMR)
Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)
ANR-18-CE40-0001,AHA,Algèbres de Hecke et Applications: Représentations, Noeuds et Physique(2018)
HEP, INSPIRE
APPEL À PROJETS GÉNÉRIQUE 2018 - Algèbres de Hecke et Applications: Représentations, Noeuds et Physique - - AHA2018 - ANR-18-CE40-0001 - AAPG2018 - VALID
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
Source :
Journal of Lie Theory, Journal of Lie Theory, Heldermann Verlag, In press
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Building on classical invariant theory, it is observed that the polarised traces generate the centraliser $Z_L(sl(N))$ of the diagonal embedding of $U(sl(N))$ in $U(sl(N))^{\otimes L}$. The paper then focuses on $sl(3)$ and the case $L=2$. A Calabi--Yau algebra $\mathcal{A}$ with three generators is introduced and explicitly shown to possess a PBW basis and a certain central element. It is seen that $Z_2(sl(3))$ is isomorphic to a quotient of the algebra $\mathcal{A}$ by a single explicit relation fixing the value of the central element. Upon concentrating on three highest weight representations occurring in the Clebsch--Gordan series of $U(sl(3))$, a specialisation of $\mathcal{A}$ arises, involving the pairs of numbers characterising the three highest weights. In this realisation in $U(sl(3))\otimes U(sl(3))$, the coefficients in the defining relations and the value of the central element have degrees that correspond to the fundamental degrees of the Weyl group of type $E_6$. With the correct association between the six parameters of the representations and some roots of $E_6$, the symmetry under the full Weyl group of type $E_6$ is made manifest. The coefficients of the relations and the value of the central element in the realisation in $U(sl(3))\otimes U(sl(3))$ are expressed in terms of the fundamental invariant polynomials associated to $E_6$. It is also shown that the relations of the algebra $\mathcal{A}$ can be realised with Heun type operators in the Racah or Hahn algebra.<br />26 pages

Details

Language :
English
ISSN :
09495932
Database :
OpenAIRE
Journal :
Journal of Lie Theory, Journal of Lie Theory, Heldermann Verlag, In press
Accession number :
edsair.doi.dedup.....c917d78c7f58c70ee60a9a2fd4a29dc0