Back to Search Start Over

Integrated platform and API for electrophysiological data

Authors :
Aljoscha Leonhardt
Andrey Sobolev
Christian Kellner
Philipp L. Rautenberg
Christian Garbers
Thomas Wachtler
Adrian Stoewer
Source :
Frontiers in Neuroinformatics, Vol 8 (2014), Frontiers in Neuroinformatics
Publication Year :
2014
Publisher :
Frontiers Media S.A., 2014.

Abstract

Recent advancements in technology and methodology have led to growing amounts of increasingly complex neuroscience data recorded from various species, modalities, and levels of study. The rapid data growth has made efficient data access and flexible, machine-readable data annotation a crucial requisite for neuroscientists. Clear and consistent annotation and organization of data is not only an important ingredient for reproducibility of results and re-use of data, but also essential for collaborative research and data sharing. In particular, efficient data management and interoperability requires a unified approach that integrates data and metadata and provides a common way of accessing this information.In this paper we describe GNData, a data management platform for neurophysiological data. GNData provides a storage system based on a data representation that is suitable to organize data and metadata from any electrophysiological experiment, with a functionality exposed via a common application programming interface (API). Data representation and API structure are compatible with existing approaches for data and metadata representation in neurophysiology. The API implementation is based on the Representational State Transfer (REST) pattern, which enables data access integration in software applications and facilitates the development of tools that communicate with the service. Client libraries that interact with the API provide direct data access from computing environments like Matlab or Python, enabling integration of data management into the scientist's experimental or analysis routines.

Details

Language :
English
ISSN :
16625196
Volume :
8
Database :
OpenAIRE
Journal :
Frontiers in Neuroinformatics
Accession number :
edsair.doi.dedup.....c9170aaacdaa6fb80713e87bd32323e5
Full Text :
https://doi.org/10.3389/fninf.2014.00032/full