Back to Search
Start Over
On the growth of the support of positive vorticity for 2D Euler equation in an infinite cylinder
- Publication Year :
- 2018
- Publisher :
- arXiv, 2018.
-
Abstract
- We consider the incompressible 2D Euler equation in an infinite cylinder $\mathbb{R}\times \mathbb{T}$ in the case when the initial vorticity is non-negative, bounded, and compactly supported. We study $d(t)$, the diameter of the support of vorticity, and prove that it allows the following bound: $d(t)\leq Ct^{1/3}\log^2 t$ when $t\rightarrow\infty$.<br />Comment: 14 pages
- Subjects :
- Physics
010102 general mathematics
Mathematical analysis
Statistical and Nonlinear Physics
Vorticity
01 natural sciences
Euler equations
Physics::Fluid Dynamics
symbols.namesake
Mathematics - Analysis of PDEs
Bounded function
0103 physical sciences
symbols
Compressibility
FOS: Mathematics
Cylinder
010307 mathematical physics
0101 mathematics
Mathematical Physics
Analysis of PDEs (math.AP)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....c911f29fd9d942c768109f03b518c64e
- Full Text :
- https://doi.org/10.48550/arxiv.1804.00081